Measurement of Cardiac Output by Pulse Dye Densitometry Using Indocyanine Green 

1997 ◽  
Vol 87 (4) ◽  
pp. 816-822 ◽  
Author(s):  
Takasuke Imai ◽  
Kenichirou Takahashi ◽  
Haruhiko Fukura ◽  
Yasuo Morishita

Background A new method for determining cardiac output (CO, l/min) using dye dilution combined with pulse dye densitometry (PDD), based on the principle of pulse oximetry, has been developed. The aim of the study was to determine the accuracy and precision of PDD by comparing it with the thermodilution method. Methods A prospective study was performed in 22 patients having surgery who were monitored using a pulmonary arterial catheter. In addition to the catheter, a specially designed photodetector was placed on the nasal wing. Ten milliliters of ice-cold indocyanine green dissolved in a 5% glucose solution (0.5 mg/ml) was injected. The dye and thermal dilution curves were simultaneously measured to calculate CO. Three to six injections were performed before and after surgery. Paired data were assessed in absolute terms, and the percentage errors were calculated by the degree of agreement and compared at three levels of CO (low < or = 3.5 < medium < or = 6 < high) by analysis of variance. Results The mean and SDs of the differences between dye and thermodilution CO were 0.16 +/- 0.80 l/min or 4.5 +/- 19.6% for 191 paired data. Measurement after surgery failed in one patient. The percentage error with low CO (9.3 +/- 19.3%) was greater (P < 0.05) than those obtained with other CO. Conclusions Pulse dye densitometry could measure CO repeatedly in patients having major surgery with the same degree of accuracy as the thermodilution method; however, a considerable degree of error was observed in some patients.

2019 ◽  
Vol 34 (6) ◽  
pp. 1199-1207
Author(s):  
Thorir Svavar Sigmundsson ◽  
Tomas Öhman ◽  
Magnus Hallbäck ◽  
Eider Redondo ◽  
Fernando Suarez Sipmann ◽  
...  

AbstractRespiratory failure may cause hemodynamic instability with strain on the right ventricle. The capnodynamic method continuously calculates cardiac output (CO) based on effective pulmonary blood flow (COEPBF) and could provide CO monitoring complementary to mechanical ventilation during surgery and intensive care. The aim of the current study was to evaluate the ability of a revised capnodynamic method, based on short expiratory holds (COEPBFexp), to estimate CO during acute respiratory failure (LI) with high shunt fractions before and after compliance-based lung recruitment. Ten pigs were submitted to lung lavage and subsequent ventilator-induced lung injury. COEPBFexp, without any shunt correction, was compared to a reference method for CO, an ultrasonic flow probe placed around the pulmonary artery trunk (COTS) at (1) baseline in healthy lungs with PEEP 5 cmH2O (HLP5), (2) LI with PEEP 5 cmH2O (LIP5) and (3) LI after lung recruitment and PEEP adjustment (LIPadj). CO changes were enforced during LIP5 and LIPadj to estimate trending. LI resulted in changes in shunt fraction from 0.1 (0.03) to 0.36 (0.1) and restored to 0.09 (0.04) after recruitment manoeuvre. Bias (levels of agreement) and percentage error between COEPBFexp and COTS changed from 0.5 (− 0.5 to 1.5) L/min and 30% at HLP5 to − 0.6 (− 2.3 to 1.1) L/min and 39% during LIP5 and finally 1.1 (− 0.3 to 2.5) L/min and 38% at LIPadj. Concordance during CO changes improved from 87 to 100% after lung recruitment and PEEP adjustment. COEPBFexp could possibly be used for continuous CO monitoring and trending in hemodynamically unstable patients with increased shunt and after recruitment manoeuvre.


Author(s):  
Arthur Le Gall ◽  
Fabrice Vallée ◽  
Jona Joachim ◽  
Alex Hong ◽  
Joaquim Matéo ◽  
...  

AbstractMulti-beat analysis (MBA) of the radial arterial pressure (AP) waveform is a new method that may improve cardiac output (CO) estimation via modelling of the confounding arterial wave reflection. We evaluated the precision and accuracy using the trending ability of the MBA method to estimate absolute CO and variations (ΔCO) during hemodynamic challenges. We reviewed the hemodynamic challenges (fluid challenge or vasopressors) performed when intra-operative hypotension occurred during non-cardiac surgery. The CO was calculated offline using transesophageal Doppler (TED) waveform (COTED) or via application of the MBA algorithm onto the AP waveform (COMBA) before and after hemodynamic challenges. We evaluated the precision and the accuracy according to the Bland & Altman method. We also assessed the trending ability of the MBA by evaluating the percentage of concordance with 15% exclusion zone between ΔCOMBA and ΔCOTED. A non-inferiority margin was set at 87.5%. Among the 58 patients included, 23 (40%) received at least 1 fluid challenge, and 46 (81%) received at least 1 bolus of vasopressors. Before treatment, the COTED was 5.3 (IQR [4.1–8.1]) l min−1, and the COMBA was 4.1 (IQR [3–5.4]) l min−1. The agreement between COTED and COMBA was poor with a 70% percentage error. The bias and lower and upper limits of agreement between COTED and COMBA were 0.9 (CI95 = 0.82 to 1.07) l min−1, −2.8 (CI95 = −2.71 to−2.96) l min−1 and 4.7 (CI95 = 4.61 to 4.86) l min−1, respectively. After hemodynamic challenge, the percentage of concordance (PC) with 15% exclusion zone for ΔCO was 93 (CI97.5 = 90 to 97)%. In this retrospective offline analysis, the accuracy, limits of agreements and percentage error between TED and MBA for the absolute estimation of CO were poor, but the MBA could adequately track induced CO variations measured by TED. The MBA needs further evaluation in prospective studies to confirm those results in clinical practice conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Ulrike Ehlers ◽  
Rolf Erlebach ◽  
Giovanna Brandi ◽  
Federica Stretti ◽  
Richard Valek ◽  
...  

Purpose. Estimation of cardiac output (CO) and evaluation of change in CO as a result of therapeutic interventions are essential in critical care medicine. Whether noninvasive tools estimating CO, such as continuous cardiac output (esCCOTM) methods, are sufficiently accurate and precise to guide therapy needs further evaluation. We compared esCCOTM with an established method, namely, transpulmonary thermodilution (TPTD). Patients and Methods. In a single center mixed ICU, esCCOTM was compared with the TPTD method in 38 patients. The primary endpoint was accuracy and precision. The cardiac output was assessed by two investigators at baseline and after eight hours. Results. In 38 critically ill patients, the two methods correlated significantly (r = 0.742). The Bland–Altman analysis showed a bias of 1.6 l/min with limits of agreement of −1.76 l/min and +4.98 l/min. The percentage error for COesCCO was 47%. The correlation of trends in cardiac output after eight hours was significant (r = 0.442), with a concordance of 74%. The performance of COesCCO could not be linked to the patient’s condition. Conclusion. The accuracy and precision of the esCCOTM method were not clinically acceptable for our critical patients. EsCCOTM also failed to reliably detect changes in cardiac output.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Ole Broch ◽  
Berthold Bein ◽  
Matthias Gruenewald ◽  
Sarah Masing ◽  
Katharina Huenges ◽  
...  

Objective. Today, there exist several different pulse contour algorithms for calculation of cardiac output (CO). The aim of the present study was to compare the accuracy of nine different pulse contour algorithms with transpulmonary thermodilution before and after cardiopulmonary bypass (CPB). Methods. Thirty patients scheduled for elective coronary surgery were studied before and after CPB. A passive leg raising maneuver was also performed. Measurements included CO obtained by transpulmonary thermodilution (COTPTD) and by nine pulse contour algorithms (COX1–9). Calibration of pulse contour algorithms was performed by esophageal Doppler ultrasound after induction of anesthesia and 15 min after CPB. Correlations, Bland-Altman analysis, four-quadrant, and polar analysis were also calculated. Results. There was only a poor correlation between COTPTD and COX1–9 during passive leg raising and in the period before and after CPB. Percentage error exceeded the required 30% limit. Four-quadrant and polar analysis revealed poor trending ability for most algorithms before and after CPB. The Liljestrand-Zander algorithm revealed the best reliability. Conclusions. Estimation of CO by nine different pulse contour algorithms revealed poor accuracy compared with transpulmonary thermodilution. Furthermore, the less-invasive algorithms showed an insufficient capability for trending hemodynamic changes before and after CPB. The Liljestrand-Zander algorithm demonstrated the highest reliability. This trial is registered with NCT02438228 (ClinicalTrials.gov).


2000 ◽  
Vol 26 (10) ◽  
pp. 1441-1448 ◽  
Author(s):  
Hironori Ishihara ◽  
Akiko Suzuki ◽  
Hirobumi Okawa ◽  
Ichiro Sakai ◽  
Toshihito Tsubo ◽  
...  

VASA ◽  
2017 ◽  
Vol 46 (5) ◽  
pp. 383-388 ◽  
Author(s):  
Henrik Christian Rieß ◽  
Anna Duprée ◽  
Christian-Alexander Behrendt ◽  
Tilo Kölbel ◽  
Eike Sebastian Debus ◽  
...  

Abstract. Background: Perioperative evaluation in peripheral artery disease (PAD) by common vascular diagnostic tools is limited by open wounds, medial calcinosis or an altered collateral supply of the foot. Indocyanine green fluorescent imaging (ICG-FI) has recently been introduced as an alternative tool, but so far a standardized quantitative assessment of tissue perfusion in vascular surgery has not been performed for this purpose. The aim of this feasibility study was to investigate a new software for quantitative assessment of tissue perfusion in patients with PAD using indocyanine green fluorescent imaging (ICG-FI) before and after peripheral bypass grafting. Patients and methods: Indocyanine green fluorescent imaging was performed in seven patients using the SPY Elite system before and after peripheral bypass grafting for PAD (Rutherford III-VI). Visual and quantitative evaluation of tissue perfusion was assessed in an area of low perfusion (ALP) and high perfusion (AHP), each by three independent investigators. Data assessment was performed offline using a specially customized software package (Institute for Laser Technology, University Ulm, GmbH). Slope of fluorescent intensity (SFI) was measured as time-intensity curves. Values were compared to ankle-brachial index (ABI), slope of oscillation (SOO), and time to peak (TTP) obtained from photoplethysmography (PPG). Results: All measurements before and after surgery were successfully performed, showing that ABI, TTP, and SOO increased significantly compared to preoperative values, all being statistically significant (P < 0.05), except for TTP (p = 0.061). Further, SFI increased significantly in both ALP and AHP (P < 0.05) and correlated considerably with ABI, TTP, and SOO (P < 0.05). Conclusions: In addition to ABI and slope of oscillation (SOO), the ICG-FI technique allows visual assessment in combination with quantitative assessment of tissue perfusion in patients with PAD. Ratios related to different perfusion patterns and SFI seem to be useful tools to reduce factors disturbing ICG-FI measurements.


2000 ◽  
Vol 7 (5) ◽  
pp. 372-379 ◽  
Author(s):  
Martin Malina ◽  
Marie Nilsson ◽  
Jan Brunkwall ◽  
Krasnodar Ivancev ◽  
Timothy Resch ◽  
...  

2013 ◽  
Vol 88 (4) ◽  
pp. 570-577 ◽  
Author(s):  
Flávia Machado Gonçalves Soares ◽  
Izelda Maria Carvalho Costa

BACKGROUND: HIV/AIDS-Associated Lipodystrophy Syndrome includes changes in body fat distribution, with or without metabolic changes. The loss of fat from the face, called facial lipoatrophy, is one of the most stigmatizing signs of the syndrome.OBJECTIVES:To evaluate the effect of FL treatment using polymethylmethacrylate (PMMA) implants on disease progression, assessed by viral load and CD4 cell count.METHODS: This was a prospective study of 44 patients treated from July 2009 to December 2010. Male and female patients, aged over 18 years, with clinically detectable FL and who had never been treated were included in the study. PMMA implantation was done to fill atrophic areas. Laboratory tests were conducted to measure viral load and CD4 count before and after treatment.RESULTS: Of the 44 patients, 72.72% were male and 27.27% female, mean age of 44.38 years. Before treatment, 82% of patients had undetectable viral load, which increased to 88.6% after treatment, but without statistical significance (p = 0.67). CD4 count before treatment ranged from 209 to 1293, averaging 493.97. After treatment, the average increased to 548.61. The increase in CD4 count after treatment was statistically significant with p = 0.02.CONCLUSION: The treatment of FL with PMMA implants showed a statistically significant increase in CD4 count after treatment, revealing the impact of FL treatment on disease progression. Viral load before and after treatment did not vary significantly.


Sign in / Sign up

Export Citation Format

Share Document