Room F, 10/17/2000 9: 00 AM - 11: 00 AM (PS) Role of Transcription Factors in the Upregulation of Nitric Oxide Production in Alveolar Macrophages Following Hyperoxia In Vitro 

2000 ◽  
Vol 93 (3A) ◽  
pp. A-445
Author(s):  
Martina Doerger ◽  
Sonja Pepperl ◽  
Christian Kupatt ◽  
Fritz Krombach
Author(s):  
O.Y. Akimov ◽  
Z.I. Karpik ◽  
K.I. Oliynyk ◽  
A.V. Mishchenko ◽  
H.V. Kostenko

Fluorides, being hazardous contaminants of soil and drinking water, can get in excessive amounts into human and animal bodies. This is especially true for regions where the fluoride content in soils is very high, for example, Poltava, Dnipropetrovsk, and Kirovohrad regions in Ukraine. Excessive fluoride intake can change the rate of nitric oxide production. The impact of fluorides on changes in nitric oxide production and metabolism in the heart and the role of redox-sensitive transcription factors in these changes are poorly understood. The aim of this study was to determine the effect of activation of κB transcription factors and activator protein 1 on the activity of inducible NO-synthase, constitutive isoforms of NO-synthase, nitrite and nitrate reductase, arginase, concentration of nitrites, peroxynitrite and nitrosothiols in the heart of rats during chronic fluoride intoxication. Materials and methods. The study was performed on 24 adult male Wistar rats weighing 220-260 grams. Animals were randomly divided into 4 groups of 6 animals in each (control, chronic fluoride intoxication group, κB blockade group and activator protein 1 blockade group). The experiment lasted 30 days. We determined the activity of inducible NO-synthase, constitutive isoforms of NO-synthase, the concentration of peroxynitrite alkali and alkaline earth metals, the concentration of nitrites and nitrosothiols, the activity of nitrite reductase, nitrate reductase and arginase. Results. Chronic fluoride intoxication increases the activity of inducible NO-synthase by 1.74 times, does not affect the activity of constitutive isoforms and reduces the activity of arginase by 35.68% compared with the control group of animals. The concentration of nitrites in the heart of rats increases 1.73 times, peroxynitrite 1.43 times, and the concentration of nitrosothiols doubled. The use of κB transcription factor blockers and activator protein 1 reduces nitric oxide production from NO synthases and reduces the concentrations of all nitric oxide metabolites in the heart of rats under conditions of chronic fluoride intoxication. Conclusions. Activation of κB transcription factors and activator protein 1 during chronic excessive intake of fluoride leads to hyperproduction of nitric oxide in the heart of rats due to increased activity of inducible NO-synthase and nitrite reductases. Excess production of nitric oxide under chronic fluoride intoxication leads to the accumulation of nitrites, peroxynitrite and nitrosothiols in the heart of rats.


1994 ◽  
Vol 179 (2) ◽  
pp. 651-660 ◽  
Author(s):  
J B Weinberg ◽  
D L Granger ◽  
D S Pisetsky ◽  
M F Seldin ◽  
M A Misukonis ◽  
...  

MRL-lpr/lpr mice spontaneously develop various manifestations of autoimmunity including an inflammatory arthropathy and immune complex glomerulonephritis. This study examines the role of nitric oxide, a molecule with proinflammatory actions, in the pathogenesis of MRL-lpr/lpr autoimmune disease. MRL-lpr/lpr mice excreted more urinary nitrite/nitrate (an in vivo marker of nitric oxide production) than did mice of normal strains and MRL-(+/+) and B6-lpr/lpr congenic strains. In addition, MRL-lpr/lpr peritoneal macrophages had an enhanced capacity to produce nitric oxide in vitro as well as increased nitric oxide synthase activity, and certain tissues from MRL-lpr/lpr mice had increased expression of inducible nitric oxide synthase (NOS) mRNA and increased amounts of material immunoreactive for inducible NOS. Oral administration of NG-monomethyl-L-arginine, a nitric oxide synthase inhibitor, prevented the development of glomerulonephritis and reduced the intensity of inflammatory arthritis in MRL-lpr/lpr mice. By using interspecific backcross mice, the gene for inducible NOS (Nosi) was mapped to mouse chromosome 11. This chromosomal localization was different from those loci that we have previously demonstrated to be linked to enhanced susceptibility to renal disease in an MRL-lpr/lpr cross. However, the chromosomal location of the NOS gene was consistent with an insulin-dependent diabetes locus identified in an analysis of nonobese diabetic (NOD) mice. These results suggest that elevated nitric oxide production could be important in the pathogenesis of autoimmunity, and that treatments to block the production of nitric oxide or block its effects might be valuable therapeutically.


2005 ◽  
Vol 173 (4S) ◽  
pp. 137-137
Author(s):  
Michael M. Ohebshalom ◽  
Stella K. Maeng ◽  
Jie Chen ◽  
Dix P. Poppas ◽  
Diane Felsen

2021 ◽  
Vol 23 ◽  
pp. 205-210
Author(s):  
Mayara Caldeira-Dias ◽  
Sarah Viana-Mattioli ◽  
Jackeline de Souza Rangel Machado ◽  
Mattias Carlström ◽  
Ricardo de Carvalho Cavalli ◽  
...  

2003 ◽  
Vol 31 (11) ◽  
pp. 1337-1346 ◽  
Author(s):  
Jose A. Adams ◽  
James E. Moore, Jr. ◽  
Michael R. Moreno ◽  
Jaqueline Coelho ◽  
Jorge Bassuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document