Clonidine and Dexmedetomidine Potently Inhibit Peristalsis in the Guinea Pig Ileum In Vitro 

2002 ◽  
Vol 97 (6) ◽  
pp. 1491-1499 ◽  
Author(s):  
Michael K. Herbert ◽  
Susanne Roth-Goldbrunner ◽  
Peter Holzer ◽  
Norbert Roewer

Background Inhibition of intestinal peristalsis is a major side effect of drugs used for anesthesia or for analgesia and sedation of patients in the intensive care unit. This in vitro study examined the effect of clonidine and dexmedetomidine on intestinal peristalsis and analyzed some of their mechanisms of action. Methods In isolated segments of the guinea pig small intestine, peristalsis was triggered by a perfusion-induced rise of the intraluminal pressure. The peristaltic pressure threshold to elicit a peristaltic wave was used to quantify drug effects on peristalsis. Vehicle (Tyrode's solution), clonidine (10 nM-100 microm), or dexmedetomidine (0.1-100 nM) were added extraserosally to the organ bath. In other series of experiments, clonidine or dexmedetomidine was administered after pretreatment with yohimbine, prazosin, apamin, naloxone, or vehicle. Clonidine was also tested after blockade of NO synthase with L-NAME and in the presence of the inactive enantiomer D-NAME. Results Clonidine and dexmedetomidine concentration-dependently increased peristaltic pressure threshold and inhibited peristalsis (clonidine: EC50 = 19.6 microm; dexmedetomidine: EC50 = 12.0 nM). The inhibition caused by clonidine could be prevented by pretreatment with yohimbine, naloxone, and apamin, but not by prazosin, L-NAME, or D-NAME. Inhibition caused by dexmedetomidine was prevented by yohimbine only.(50) (50) Conclusions The results reveal that clonidine and, much more potently, dexmedetomidine inhibit peristalsis of the guinea pig ileum. The inhibition is caused by interaction with alpha2 adrenoceptors and, in the case of clonidine, also involves activation of small conductance Ca2+ -activated potassium channels and endogenous opioidergic pathways.

2003 ◽  
Vol 31 (4) ◽  
pp. 419-427 ◽  
Author(s):  
Peter Holzer ◽  
Anaid Shahbazian ◽  
Evelin Painsipp ◽  
Akos Heinemann

Peristalsis is the aboral movement by which the intestine propels its contents. Since pharmacological research requires an experimental model with which drug-induced modifications of peristalsis can be reliably quantified, we set out to develop and validate an in vitro method for studying peristalsis in multiple gut segments. In our arrangement, up to four 10cm segments isolated from the guinea-pig jejunum and ileum can be set up in parallel and their lumens perfused. Peristalsis was elicited by pressure-evoked wall distension, and the peristalsis-induced changes in the intraluminal pressure were evaluated with software that determined the peristaltic pressure threshold, the frequency, maximal acceleration and amplitude of the peristaltic waves, and the residual baseline pressure. Validation experiments showed that the peristalsis parameters at baseline and after modification by morphine (0.01–10μM) did not differ between segments from the jejunum and ileum, or between segments examined in a consecutive manner. In conclusion, our work succeeded in optimising the use of the guinea-pig jejunum and ileum for multiple recordings of peristalsis in vitro, and in refining the recording and evaluation of peristaltic motility. This system promises to be particularly useful in the pharmacological screening and testing of drugs which modify peristalsis.


1997 ◽  
Vol 273 (5) ◽  
pp. G1127-G1134 ◽  
Author(s):  
W. MacNaughton ◽  
B. Moore ◽  
S. Vanner

This study characterized tachykinin-evoked secretomotor responses in in vitro submucosal and mucosal-submucosal preparations of the guinea pig ileum using combined intracellular and Ussing chamber recording techniques. Superfusion of endogenous tachykinins substance P (SP), neurokinin A (NKA), and neurokinin B depolarized single submucosal neurons and evoked increased short-circuit current ( I sc) responses in Ussing chamber preparations. The NK1-receptor agonist [Sar9,Met(O2)11]SP [50% effective concentration (EC50) = 2 nM] depolarized all submucosal neurons examined. The NK3-receptor agonist senktide (EC50 = 20 nM) depolarized ∼50% of neurons examined, whereas the NK2-receptor agonist [Ala5,β-Ala8]NKA-(4—10) had no effect on membrane potential. [Sar9,Met(O2)11]SP and senktide evoked similar increases in I sc that were tetrodotoxin sensitive (91 and 100%, respectively) and were selectively blocked by the NK1antagonist CP-99,994 and the NK3antagonist SR-142801, respectively. Capsaicin-evoked increases in I sc were significantly inhibited (54%, P < 0.05) by CP-99,994 but not by SR-142801. Neither antagonist inhibited slow excitatory postsynaptic potentials. These findings suggest that tachykinin-evoked secretion in guinea pig ileum is mediated by NK1 and NK3 receptors on submucosal secretomotor neurons and that capsaicin-sensitive nerves release tachykinin(s) that activate the NK1 receptors.


1959 ◽  
Vol 197 (4) ◽  
pp. 926-928 ◽  
Author(s):  
T. Hastings Wilson ◽  
Elliott W. Strauss

Sacs of everted small intestine from a variety of animals were incubated in bicarbonate-saline containing vitamin B12 with and without intrinsic factor (IF). B12 uptake by rat intestine was stimulated only by its own intrinsic factor. Guinea pig ileum responded to all intrinsic factors tested (guinea pig, rat, hog, hamster, human being and rabbit). The intestines of hamster and rabbit were intermediate in specificity, responding to some, but not all, of the IF preparations. Species differences occur in both the intestine and intrinsic factor preparations. The guinea pig ileum was suggested as a possible assay for both hog and human IF.


1984 ◽  
Vol 246 (5) ◽  
pp. G509-G514 ◽  
Author(s):  
D. H. Teitelbaum ◽  
T. M. O'Dorisio ◽  
W. E. Perkins ◽  
T. S. Gaginella

The peptides caerulein, neurotensin, somatostatin, and substance P modulate the activity of intestinal neurons and alter gut motility. We examined the effects of these peptides on acetylcholine release from the myenteric plexus and intestinal contractility in vitro. Caerulein (1 X 10(-9) M), neurotensin (1.5 X 10(-6) M), and substance P (1 X 10(-7) M) significantly enhanced the release of [3H]acetylcholine from the myenteric plexus of the guinea pig ileum. This effect was inhibited by tetrodotoxin (1.6 X 10(-6) M). Somatostatin (10(-6) M) inhibited caerulein- and neurotensin-evoked release of acetylcholine but did not inhibit release induced by substance P. Caerulein, neurotensin, and substance P caused contraction of the guinea pig ileal longitudinal muscle. Somatostatin inhibited the contractions induced by caerulein and neurotensin. In contrast, substance P-induced contraction was not inhibited significantly by somatostatin. Thus, in the guinea pig ileum, caerulein-, neurotensin-, and substance P-induced contractility is due, at least in part, to acetylcholine release from the myenteric plexus. The ability of somatostatin to inhibit peptide-induced contractility is selective, and its mechanism may be attributed to inhibition of acetylcholine release.


2000 ◽  
Vol 278 (2) ◽  
pp. G273-G280 ◽  
Author(s):  
B. A. Moore ◽  
S. Vanner

This study examined synaptic inputs from myenteric neurons innervating submucosal neurons. Intracellular recordings were obtained from submucosal S neurons in guinea pig ileal preparations in vitro, and synaptic inputs were recorded in response to electrical stimulation of exposed myenteric plexus. Most S neurons received synaptic inputs [>80% fast (f) excitatory postsynaptic potentials (EPSP), >30% slow (s) EPSPs] from the myenteric plexus. Synaptic potentials were recorded significant distances aboral (fEPSPs, 25 mm; sEPSPs, 10 mm) but not oral to the stimulating site. When preparations were studied in a double-chamber bath that chemically isolated the stimulating “myenteric chamber” from the recording side “submucosal chamber,” all fEPSPs were blocked by hexamethonium in the submucosal chamber, but not by a combination of nicotinic, purinergic, and 5-hydroxytryptamine-3 receptor antagonists in the myenteric chamber. In 15% of cells, a stimulus train elicited prolonged bursts of fEPSPs (>30 s duration) that were blocked by hexamethonium. These findings suggest that most submucosal S neurons receive synaptic inputs from predominantly anally projecting myenteric neurons. These inputs are poised to coordinate intestinal motility and secretion.


1983 ◽  
Vol 244 (4) ◽  
pp. G421-G425 ◽  
Author(s):  
H. J. Cooke ◽  
M. Montakhab ◽  
P. R. Wade ◽  
J. D. Wood

Transmural movement of 5-hydroxytryptamine (5-HT) was studied in guinea pig small intestine in vitro in order to test the hypothesis that there is mucosal 5-HT barrier in this species. Segments of guinea pig ileum were mounted as flat sheets in flux chambers or were everted and perfused. Mucosal-to-serosal (Jm leads to s) and serosal-to-mucosal (Js leads to m) fluxes of 5-HT were measured in the absence of 5-HT gradients and under open- or short-circuited conditions. The results indicated that substantial transmural movement of 5-HT occurred in these preparations. Both Jm leads to s and Js leads to m were linear functions of the 5-HT concentration over a range of 1-30 microM and were not significantly different in the two directions. Addition of 2,4-dinitrophenol to both sides of the tissue reduced short-circuit current to zero and increased both tissue conductance and unidirectional 5-HT fluxes. These results suggested that the 5-HT fluxes across the guinea pig ileum occurred by passive mechanisms. Fluxes of 5-HT across preparations with the muscularis externa removed were not significantly different from fluxes across intact preparations. Mucosal-to-serosal 5-HT fluxes in everted perfused sacs were comparable with fluxes in the flat-sheet preparations. The data are not consistent with the hypothesis of a "tissue barrier" that functions to prevent 5-HT from reaching serotonergic receptors on enteric ganglion cells or enteroendocrine cells.


Sign in / Sign up

Export Citation Format

Share Document