Numeric Modeling of the Cardiovascular System with a Left Ventricular Assist Device

ASAIO Journal ◽  
1999 ◽  
Vol 45 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Jianhua Zhou ◽  
Guy P. Armstrong ◽  
Alexander L. Medvedev ◽  
William A. Smith ◽  
Leonard A. R. Golding ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Selim Bozkurt ◽  
Koray K. Safak

Dilated cardiomyopathy is the most common type of the heart failure which can be characterized by impaired ventricular contractility. Mechanical circulatory support devices were introduced into practice for the heart failure patients to bridge the time between the decision to transplant and the actual transplantation which is not sufficient due to the state of donor organ supply. In this study, the hemodynamic response of a cardiovascular system that includes a dilated cardiomyopathic heart under support of a newly developed continuous flow left ventricular assist device—Heart Turcica Axial—was evaluated employing computer simulations. For the evaluation, a numerical model which describes the pressure-flow rate relations of Heart Turcica Axial, a cardiovascular system model describing the healthy and pathological hemodynamics, and a baroreflex model regulating the heart rate were used. Heart Turcica Axial was operated between 8000 rpm and 11000 rpm speeds with 1000 rpm increments for assessing the pump performance and response of the cardiovascular system. The results also give an insight about the range of the possible operating speeds of Heart Turcica Axial in a clinical application. Based on the findings, operating speed of Heart Turcica Axial should be between 10000 rpm and 11000 rpm.


Author(s):  
Suraj R. Pawar ◽  
Ethan S. Rapp ◽  
Jeffrey R. Gohean ◽  
R.G. Longoria

Abstract Advancement of implanted Left Ventricular Assist Device (LVAD) technology includes modern sensing and control methods to enable online diagnostics and monitoring of patients using on-board sensors. These methods often rely on a cardiovascular system (CVS) model, the parameters of which must be identified for the specific patient. Some of these, such as the Systemic Vascular Resistance (SVR), can be estimated online while others must be identified separately. This paper describes a three-staged approach for designing a parameter identification algorithm (PIA) for this problem. The approach is demonstrated using a two-element Windkessel model of the systemic circulation with a time-varying elastance for the left ventricle. A parameter identifiability stage is followed by identification using an unscented Kalman filter (UKF) which uses measurements of left ventricle pressure (Plv), aortic pressure (Pao), aortic flow (Qa), and known input measurement of LVAD flow rate (Qvad). Both simulation and experimental data from animal experiments were used to evaluate the presented methods. By bounding the initial guess for left ventricular volume, the identified CVS model is able to reproduce signals of Plv, Pao and Qa within a normalized root mean squared error (nRMSE) of 5.1 %, 19 %, and 11 %, respectively during simulations. Experimentally, the identified model is able to estimate SVR with an accuracy of 0.56 % compared with values from invasive measurements. Diagnostics and physiological control algorithms on-board modern LVADs could use CVS models other than those shown here, and the presented approach is easily adaptable to them. The methods also demonstrate how to test the robustness and accuracy of the identification algorithm.


Author(s):  
J P Cassella ◽  
V Salih ◽  
T R Graham

Left ventricular assist systems are being developed for eventual long term or permanent implantation as an alternative to heart transplantation in patients unsuitable for or denied the transplant option. Evaluation of the effects of these devices upon normal physiology is required. A preliminary study was conducted to evaluate the morphology of aortic tissue from calves implanted with a pneumatic Left Ventricular Assist device-LVAD. Two 3 month old heifer calves (calf 1 and calf 2) were electively explanted after 128 days and 47 days respectively. Descending thoracic aortic tissue from both animals was removed immediately post mortem and placed into karnovsky’s fixative. The tissue was subsequently processed for transmission electron microscopy (TEM). Some aortic tissue was fixed in neutral buffered formalin and processed for routine light microscopy.


Sign in / Sign up

Export Citation Format

Share Document