numeric modeling
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Michael Schmähl ◽  
Sebastian Speck ◽  
Mirko Hornung

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 902
Author(s):  
Lena Buffoni ◽  
Lennart Ochel ◽  
Adrian Pop ◽  
Peter Fritzson ◽  
Niklas Fors ◽  
...  

Industrial cyber-physical system products interleave hardware, software, and communication components. System complexity is increasing simultaneously with increased demands on quality and shortened time-to-market. To effectively support the development of such systems, we present languages and tools for comprehensive integrated model-based development that cover major phases such as requirement analysis, design, implementation, and maintenance. The model-based approach raises the level of abstraction and allows to perform virtual prototyping by simulating and optimizing system models before building physical products. Moreover, open standards and open source implementations enable model portability, tool reuse and a broader deployment. In this paper we present a general overview of the available solutions with focus on Modelica/OpenModelica, Bloqqi, and Acumen. The paper presents contributions to these languages and environments, including symbolic-numeric modeling, requirement verification, code generation, model debugging, design optimization, graphical modeling, and variant handling with traceability, as well a general discussion and conclusions.


2021 ◽  
Vol 21 (1) ◽  
pp. 23-36
Author(s):  
Hai Nguyen Minh ◽  
Vinh Vu Duy

Nghi Son is an economic zone oriented to developing heavy industry and petrochemicals and has potential to become the most substantial economic zone in the North Central region. The zone is also one of the potential waste sources polluting Thanh Hoa coastal waters. Numeric modeling using Delft3D software package with different scenarios: Current status scenario, controlled discharge scenario, and incident scenario was developed to simulate states of some pollutants of organics and nutrients from the zone to Thanh Hoa coastal waters in different periods. The simulation results show that under controlled discharge (increasing pollutant concentration with the control of waste discharge), the concentration of pollutants was increasing and high around discharging points. In contrast, in incident case from the zone, pollutant concentrations increase markedly both in the magnitude and in the impact range to surrounding areas. When an accident happens, the influence scale will be expanded significantly, especially in the rainy season.


Fishes ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 10
Author(s):  
D. P. Zielinski ◽  
P. W. Sorensen

Invasive bigheaded carp are advancing up the Upper Mississippi River by passing through its locks-and-dams (LDs). Although these structures already impede fish passage, this role could be greatly enhanced by modifying how their spillway gates operate, adding deterrent systems to their locks, and removing carp. This study examined this possibility using numeric modeling and empirical data, which evaluated all three options on an annual basis in both single LDs and pairs under different river flow conditions. Over 100 scenarios were modeled. While all three approaches showed promise, ranging from 8 to 73% reductions in how many carp pass a single LD, when employed together at pairs of LDs, upstream movement rates of invasive carp could be reduced 98–99% from current levels. Although modifying spillway gate operation is the least expensive option, its efficacy drops at high flows, so lock deterrents and/or removal using fishing/trapping are required to move towards complete blockage. Improved deterrent efficacy could also offset the need for more efficient removal. This model could help prioritize research and management actions for containing carp.


2021 ◽  
pp. 15-22
Author(s):  
N.E. Pil ◽  
◽  
V.M. Chigvintsev ◽  

The present work focuses on building up a mathematical model showing bacteria population evolution in human lungs taking into account dynamics of immune processes; the model would be useful for assessing functional damage to the lungs. Numeric modeling of processes that occur in a human body is a promising tool for analyzing and predicting impacts exerted by risk factors on health. The suggested approach was developed within a concept describing a human body as a multi-level model that allowed for interaction between various systems and functional state of examined organs given effects produced on them by different adverse factors. Since direct modeling of the structure and processes occurring in the lungs is rather complicated, these organs are usually described with a porous medium model and it requires a lot of computing resources. Damage to the lungs determined via an evolution equation was introduced into the model. The equation described dependence between damage and infiltrate distribution and effects produced on alveolar cells by toxicants excreted by bacteria. The work dwells on certain results that characterize how concentrations of immune system components and bacteria population are spatially distributed when an immune response is evolving. Our research provides a qualitative insight into reasons for quantitative changes in bacteria population under immune reactions occurring in a body under exposure to different factors. This approach can be used for obtaining more precise parameters for existing population models that show spread and clinical course of bacterial infections and for making a long-term prediction of an epidemiological situation. Results obtained with this approach can be useful for analyzing risks of communicable diseases including those occurring under exposure to adverse environmental factors.


2021 ◽  
pp. 15-22
Author(s):  
N.E. Pil ◽  
◽  
V.M. Chigvintsev ◽  

The present work focuses on building up a mathematical model showing bacteria population evolution in human lungs taking into account dynamics of immune processes; the model would be useful for assessing functional damage to the lungs. Numeric modeling of processes that occur in a human body is a promising tool for analyzing and predicting impacts exerted by risk factors on health. The suggested approach was developed within a concept describing a human body as a multi-level model that allowed for interaction between various systems and functional state of examined organs given effects produced on them by different adverse factors. Since direct modeling of the structure and processes occurring in the lungs is rather complicated, these organs are usually described with a porous medium model and it requires a lot of computing resources. Damage to the lungs determined via an evolution equation was introduced into the model. The equation described dependence between damage and infiltrate distribution and effects produced on alveolar cells by toxicants excreted by bacteria. The work dwells on certain results that characterize how concentrations of immune system components and bacteria population are spatially distributed when an immune response is evolving. Our research provides a qualitative insight into reasons for quantitative changes in bacteria population under immune reactions occurring in a body under exposure to different factors. This approach can be used for obtaining more precise parameters for existing population models that show spread and clinical course of bacterial infections and for making a long-term prediction of an epidemiological situation. Results obtained with this approach can be useful for analyzing risks of communicable diseases including those occurring under exposure to adverse environmental factors.


2019 ◽  
Author(s):  
JORGE VÍCTOR PRADO-HERNÁNDEZ ◽  
FERMÍN PASCUAL-RAMÍREZ ◽  
DAVID CRISTÓBAL-ACEVEDO ◽  
ÓSCAR GERARDO VALENTÍN-PAZ ◽  
MAURICIO CARRILLO-GARCÍA ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2256 ◽  
Author(s):  
Matias Quezada ◽  
Aldo Tamburrino ◽  
Yarko Niño

The scour around cylindrical piles due to codirectional and opposite waves and currents is studied with Reynolds Averaged Navier–Stokes (RANS) equations via REEF3D numeric modeling. First, a calibration process was made through a comparison with the experimental data available in the literature. Subsequently, not only the hydrodynamics, but also the expected scour for a set of scenarios, which were defined by the relative velocity of the current ( U C W ), were studied numerically. The results obtained show that the hydrodynamics around the pile for codirectional or opposite waves and currents not have significant differences when analyzed in terms of their velocities, vorticities and mean shear stresses, since the currents proved to be more relevant compared to the net flow. The equilibrium scour, estimated by the extrapolation of the numerical data with the equation by Sheppard, enabled us to estimate values close to those described in the literature. From this extrapolation, it was verified that the dimensionless scour would be less when the waves and currents are from opposite directions. The U C W parameter is an indicator used to adequately measure the interactions between the currents and waves under conditions of codirectional flow. Nevertheless, it is recommended to modify this parameter for currents and waves in opposite directions, and an equation is proposed for this case.


Sign in / Sign up

Export Citation Format

Share Document