Surgical Correction of Vertebral Axial Rotation in Adolescent Idiopathic Scoliosis

1996 ◽  
Vol 9 (3) ◽  
pp. 214???219 ◽  
Author(s):  
David D. Aronsson ◽  
Ian A. F. Stokes ◽  
Peter J. Ronchetti ◽  
B. Stephens Richards
Spine ◽  
1994 ◽  
Vol 19 (9) ◽  
pp. 1032-1036 ◽  
Author(s):  
Ian A. F. Stokes ◽  
Peter J. Ronchetti ◽  
David D. Aronsson

2017 ◽  
Vol 11 (5) ◽  
pp. 770-779 ◽  
Author(s):  
Subaraman Ramchandran ◽  
Norah Foster ◽  
Akhila Sure ◽  
Thomas J. Errico ◽  
Aaron J. Buckland

<sec><title>Study Design</title><p>Retrospective analysis.</p></sec><sec><title>Purpose</title><p>Our hypothesis is that the surgical correction of adolescent idiopathic scoliosis (AIS) maintains normal sagittal alignment as compared to age-matched normative adolescent population.</p></sec><sec><title>Overview of Literature</title><p>Sagittal spino-pelvic alignment in AIS has been reported, however, whether corrective spinal fusion surgery re-establishes normal alignment remains unverified.</p></sec><sec><title>Methods</title><p>Sagittal profiles and spino-pelvic parameters of thirty-eight postsurgical correction AIS patients ≤21 years old without prior fusion from a single institution database were compared to previously published normative age-matched data. Coronal and sagittal measurements including structural coronal Cobb angle, pelvic incidence, pelvic tilt, thoracic kyphosis, lumbar lordosis, sagittal vertical axis, C2–C7 cervical lordosis, C2–C7 sagittal vertical axis, and T1 pelvic angles were measured on standing full-body stereoradiographs using validated software to compare preoperative and 6 months postoperative changes with previously published adolescent norms. A sub-group analysis of patients with type 1 Lenke curves was performed comparing preoperative to postoperative alignment and also comparing this with previously published normative values.</p></sec><sec><title>Results</title><p>The mean coronal curve of the 38 AIS patients (mean age, 16±2.2 years; 76.3% female) was corrected from 53.6° to 9.6° (80.9%, <italic>p</italic>&lt;0.01). None of the thoracic and spino-pelvic sagittal parameters changed significantly after surgery in previously hypo- and normo-kyphotic patients. In hyper-kyphotic patients, thoracic kyphosis decreased (<italic>p</italic>=0.003) with a reciprocal decrease in lumbar lordosis (<italic>p</italic>=0.01), thus lowering pelvic incidence-lumbar lordosis mismatch mismatch (<italic>p</italic>=0.009). Structural thoracic scoliosis patients had slightly more thoracic kyphosis than age-matched patients at baseline and surgical correction of the coronal plane of their scoliosis preserved normal sagittal alignment postoperatively. A sub-analysis of Lenke curve type 1 patients (n=24) demonstrated no statistically significant changes in the sagittal alignment postoperatively despite adequate coronal correction.</p></sec><sec><title>Conclusions</title><p>Surgical correction of the coronal plane in AIS patients preserves sagittal and spino-pelvic alignment as compared to age-matched asymptomatic adolescents.</p></sec>


2018 ◽  
Vol 31 (3) ◽  
pp. E209-E215 ◽  
Author(s):  
Jérémy Allia ◽  
Jean-Luc Clément ◽  
Virginie Rampal ◽  
Béatrice Leloutre ◽  
Olivier Rosello ◽  
...  

2020 ◽  
pp. 219256822094883
Author(s):  
Kristóf József ◽  
Ádám Tibor Schlégl ◽  
Máté Burkus ◽  
István Márkus ◽  
Ian O’Sullivan ◽  
...  

Study Design: Retrospective cross-sectional study. Objectives: It is generally believed that the apical vertebra has the largest axial rotation in adolescent idiopathic scoliosis. We investigated the relationship between apical axial vertebral rotation (apicalAVR) and maximal axial vertebral rotation (maxAVR) in both major and minor curves using biplanar stereo-imaging. Methods: EOS 2D/3D biplanar radiograph images were collected from 332 patients with adolescent idiopathic scoliosis (Cobb angle range 10°-122°, mean age 14.7 years). Based on the X-ray images, with the help of 3D full spine reconstructions Cobb angle, curvature level, apicalAVR and maxAVR were determined. These parameters were also determined for minor curves in Lenke 2, 3, 4, 6 type patients. Maximal thoracic rotation and maximal thoracolumbar/lumbar rotation were calculated. Statistical analysis was performed with descriptive statistics, Shapiro-Wilk test, and Wilcoxon signed-rank test. Results: The apical vertebrae were the most rotated vertebra in only 40.4% of the major curves, and 31.7% in minor curves. MaxAVR significantly exceeded apicalAVR values in the major curves ( P < .001) as well as in minor curves ( P < .001). The 2 parameters differed significantly in each severity group and Lenke type. Conclusions: The apical vertebrae were not the most rotated vertebra in more than half of cases investigated indicating that apicalAVR and maxAVR should be considered as 2 distinct parameters, of which maxAVR fully describes the axial dimension of scoliosis. Furthermore, the substitution of maxAVR for the apicalAVR should be especially avoided in double and triple curves, as the apical vertebra was even less commonly the most rotated in minor curves.


2020 ◽  
Vol 8 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Baron S. Lonner ◽  
Andrea Castillo ◽  
Gabrielle Kassin ◽  
Yuan Ren

Sign in / Sign up

Export Citation Format

Share Document