vertebral rotation
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 36)

H-INDEX

30
(FIVE YEARS 2)

Children ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 81
Author(s):  
Yeun-Jie Yoo ◽  
Jung-Geun Park ◽  
Leechan Jo ◽  
Youngdeok Hwang ◽  
Mi-Jeong Yoon ◽  
...  

(1) Background: scoliosis is highly prevalent in children with neurological disorders, however, studies predicting the progression and affecting the direction of scoliosis have been insufficient. We investigated the factors associated with the progression and direction of scoliosis in children with neurological disorders. (2) Method: retrospectively, 518 whole spine radiographs from 116 patients were used for analysis. Factors affecting the progression of scoliosis over time were analyzed using linear mixed-effects model. Factors associated with the apex direction of the scoliosis were analyzed. (3) Results: pelvic obliquity (PO) ≥ 2.5°, gross motor function classification system level V, vertebral rotation, and female sex significantly affect the progression of scoliosis (p = 0.04, <0.001, <0.001, 0.005, respectively). The higher side of PO and the apex side of scoliosis were interrelated (χ² = 14.58, p < 0.001), but the asymmetrical neurological upper extremity involvement was not. (4) Conclusions: severely impaired gross motor function, PO, vertebral rotation, and female sex were significantly related to the progression of scoliosis. The higher side of PO was opposite to the apex side of scoliosis. By identifying the factors that influence the progression of scoliosis, patients at high risk could be more actively intervened to minimize the severe complications.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Yachao Ma ◽  
Peipei Huang ◽  
Zhipeng Tu ◽  
Zhou Yao ◽  
Zhe Wang ◽  
...  

Abstract Background Vertebral rotation and facet tropism are very common in various lumbar degenerative diseases. Facet tropism means the presence of asymmetric angles on both sides of the facet joints. Studies have shown that facet tropism contributes to lumbar degenerative disease, and also inevitably leads to the asymmetry of movement and the imbalance of force, which may be possible to rotate the vertebral body. The aim of this study was to explore the correlation between lumbar vertebral rotation and facet tropism in patients with lumbar degenerative diseases. Methods A total of 198 patients with lumbar degenerative diseases from 2018 to 2019 were enrolled. Five hundred and seventy vertebral rotation angles and 1140 facet angles were measured. The vertebral bodies are divided into non-rotation group (Group A) and rotation group (Group B) with the vertebral rotation angle of 3° as the boundary. The information including gender, age, BMI (body mass index), bone mineral density, history of smoking, drinking, hypertension, diabetes, diagnosis, segment distribution, and degree of facet degeneration were also counted. Using inter-class correlation coefficients (ICC) to test the reliability of measurement results. Univariate and multivariate logistic regression analysis were used to analyze the relationship between vertebral rotation and facet tropism. Results The consistency of the ICC within the groups of the observers is above 0.8, with good agreement. The results of univariate analysis showed that facet tropism was significantly different between group A and group B (OR (odds ratio)  = 3.30, 95% CI  =  2.03–5.35, P  < 0.0001). Other significant factors were included as adjustment variables into the multivariate regression model. Three models were analyzed separately (Model 1: non-adjusted. Model 2: adjust for age; facet degeneration; Model 3: adjust for age; disease distribution; segment distribution; facet degeneration). The results showed that after adjusting the confounders, the correlation between facet tropism and vertebral rotation did not change (Model 1: OR  = 3.30, 95% CI  = 2.03–5.35, P  < 0.0001; Model 2: adjusted OR  = 2.87, 95% CI  = 1.66–4.97, P  = 0.0002, Model 3: adjusted OR  = 2.84, 95% CI  = 1.56–5.17, P  = 0.0006). Conclusion Current research demonstrates that there is an association between vertebral rotation and facet tropism, suggesting that vertebral rotation may also have a certain degree of correlation with lumbar degenerative diseases.


2021 ◽  
Vol 11 (23) ◽  
pp. 11084
Author(s):  
José Hurtado-Avilés ◽  
Vicente J. León-Muñoz ◽  
Pilar Andújar-Ortuño ◽  
Fernando Santonja-Renedo ◽  
Mónica Collazo-Diéguez ◽  
...  

Axial vertebral rotation (AVR) and Cobb angles are the essential parameters to analyse different types of scoliosis, including adolescent idiopathic scoliosis. The literature shows significant discrepancies in the validity and reliability of AVR measurements taken in radiographic examinations, according to the type of vertebra. This study’s scope evaluated the validity and absolute reliability of thoracic and lumbar vertebrae AVR measurements, using a validated software based on Raimondi’s method in digital X-rays that allowed measurement with minor error when compared with other traditional, manual methods. Twelve independent evaluators measured AVR on the 74 most rotated vertebrae in 42 X-rays with the software on three separate occasions, with one-month intervals. We have obtained a gold standard for the AVR of vertebrae. The validity and reliability of the measurements of the thoracic and lumbar vertebrae were studied separately. Measurements that were performed on lumbar vertebrae were shown to be 3.6 times more valid than those performed on thoracic, and with almost an equal reliability (1.38° ± 1.88° compared to −0.38° ± 1.83°). We can conclude that AVR measurements of the thoracic vertebrae show a more significant Mean Bias Error and a very similar reliability than those of the lumbar vertebrae.


2021 ◽  
Vol 10 (22) ◽  
pp. 5351
Author(s):  
Hong Jin Kim ◽  
Jae Hyuk Yang ◽  
Dong-Gune Chang ◽  
Se-Il Suk ◽  
Seung Woo Suh ◽  
...  

Several studies have reported incidence and risk factors for the development of proximal junctional kyphosis (PJK) in patients with adolescent idiopathic scoliosis (AIS). However, there is little information regarding long-term follow-up after pedicle screw instrumentation (PSI) with rod derotation (RD) and direct vertebral rotation (DVR). Sixty-nine AIS patients who underwent deformity correction using PSI with RD and DVR were retrospectively analyzed in two groups according to the occurrence of PJK, with a minimum five-year follow-up, including a non-PJK group (n = 62) and PJK group (n = 7). Radiological parameters were evaluated at preoperative, postoperative, and last follow-up. Incidence for PJK was 10.1% (7/69 patients), with a mean 9.4-year follow-up period. The thoracolumbar/lumbar curve (TL/L curve) was proportionally higher in the PJK group. The proximal compensatory curve was significantly lower in the PJK group than in the non-PJK group preoperatively (p = 0.027), postoperatively (p = 0.001), and at last follow-up (p = 0.041). The development of PJK was associated with the TL/L curve pattern, lower preoperative proximal compensatory curve, and over-correction of the proximal curve for PSI with RD and DVR. Therefore, careful evaluation of compensatory curves as well as of the main curve is important to prevent the development of PJK in the treatment of AIS.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shirley Chang ◽  
Jason Maddox ◽  
Erich Berg ◽  
Karen Kim ◽  
Scott Messier ◽  
...  

Abstract Context The thoracic spine is a common area of focus in osteopathic manipulative medicine (OMM) for a variety of conditions. Thoracic spine somatic dysfunction diagnosis is achieved by palpating for asymmetry at the tips of the transverse processes (TPs). Previous studies reveal that instead of following the rule of threes, the TPs of a given thoracic vertebra generally align with the spinous process (SP) of the vertebra above. Ultrasonography has been widely utilized as a diagnostic tool to monitor musculoskeletal conditions; it does not utilize ionizing radiation, and it has comparable results to gold-standard modalities. In the case of thoracic somatic dysfunction, ultrasound (US) can be utilized to determine the location of each vertebral TP and its relationship with the SP. Previous studies have investigated the correlation between OMM and ultrasonography of the cervical, lumbar, and sacral regions. However, there has been no study yet that has compared osteopathic structural examination with ultrasonographic examination of the thoracic vertebral region. Objectives To examine the relationship between osteopathic palpation and ultrasonographic measurements of the thoracic spine by creating a study design that utilizes interexaminer agreement and correlation. Methods The ClinicalTrials.gov study identifier is NCT04823637. Subjects were student volunteers recruited from the Midwestern University (MWU)—Glendale campus. A nontoxic, nonpermanent marker was utilized to mark bony landmarks on the skin. Two neuromusculoskeletal board-certified physicians (OMM1, OMM2) separately performed structural exams by palpating T2–T5 TPs to determine vertebral rotation. Two sonographers (US1, US2) separately scanned and measured the distance from the tip of the SP to the adjacent TPs of the vertebral segment below. Demographic variables were summarized with mean and standard deviation. Interexaminer agreement was assessed with percent agreement, Cohen’s Kappa, and Fleiss’ Kappa. Correlation was measured by Spearman’s rank correlation coefficient. Recruitment and protocols were approved by the MWU Institutional Review Board (IRB). Results US had fair interexaminer agreement for the overall most prominent segmental rotation of the T3–T5 thoracic spine, with Cohen’s Kappa at 0.27 (0.09, 0.45), and a total agreement percentage at 51.5%. Osteopathic palpation revealed low interexaminer agreement for the overall most prominent vertebral rotation, with Cohen’s Kappa at 0.05 (0.0, 0.27), and 31.8%. Segment-specific vertebral analysis revealed slight agreement between US examiners, with a correlation coefficient of 0.23, whereas all other pairwise comparisons showed low agreement and correlation. At T4, US had slight interexaminer agreement with 0.24 correlation coefficient, and osteopathic palpation showed low interexaminer (OMM1 vs. OMM2) agreement (0.17 correlation coefficient). At T5, there was moderate agreement between the two sonographers with 0.44 (0.27, 0.60) and 63.6%, with a correlation coefficient of 0.57, and slight agreement between OMM1 and OMM2 with 0.12 (0.0, 0.28) and 42.4%, with 0.23 correlation coefficient. Conclusions This preliminary study of an asymptomatic population revealed that there is a low-to-moderate interexaminer reliability between sonographers, low-to-slight interexaminer reliability between osteopathic physicians, and low interexaminer reliability between OMM palpatory examination and ultrasonographic evaluation of the thoracic spine.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shih-Hsiang Chou ◽  
Wen-Wei Li ◽  
Cheng-Chang Lu ◽  
Kun-Ling Lin ◽  
Sung-Yen Lin ◽  
...  

Abstract Background Early versions of spinal muscular atrophy (SMA) scoliosis correction surgery often involved sublaminar devices. Recently, the utilization of pedicle screws has gained much popularity. Pedicle screws are generally believed to provide additional deformity correction, but pedicle size and rotational deformity limit their application in the thoracic spine, resulting in a hybrid construct involving pedicle screws and sublaminar wire. Studies of the efficacy of hybrid instrumentation in SMA scoliosis are often limited by the scarcity of the disease itself. In this study, we aimed to compare the surgical outcomes between hybrid constructs involving pedicle screws and sublaminar wire and sublaminar wire alone in patients with SMA scoliosis. Methods We retrospectively reviewed the clinical records and radiographic assessments of patients with SMA scoliosis who underwent corrective surgery between 1993 and 2017. The radiographic assessments included deformity correction and progressive changes in the major curve angle, pelvic tilt (PT) and coronal balance (CB). The correction of deformities was observed postoperatively and at the patient’s 2-year follow-up to test the efficacy of each type of construct. Results Thirty-three patients were included in this study. There were 14 and 19 patients in the wiring and hybrid construct groups, respectively. The hybrid construct group demonstrated a higher major curve angle correction (50.5° ± 11.2° vs. 36.4° ± 8.4°, p < 0.001), a higher apical vertebral rotation correction (10.6° ± 3.9° vs. 4.8° ± 2.6°, p < 0.001), and a reduced progression of the major curve angle at the 2-year follow-up (5.1° ± 2.9° vs. 8.7° ± 4.8°, p < 0.001). A moderate correlation was observed between the magnitude of correction of the apical vertebral rotation angle and the major curve (r = 0.528, p = 0.002). Conclusion This study demonstrated that hybrid instrumentation can provide a greater magnitude of correction in major curve and apical rotation as well as less major curve progression than sublaminar wire instrumentation alone in patients with SMA scoliosis. Level of evidence III


2021 ◽  
Vol 162 (39) ◽  
pp. 1573-1578
Author(s):  
Kristóf József ◽  
István Márkus ◽  
Csaba Bogyó ◽  
Miklós Tunyogi Csapó ◽  
Ádám Tibor Schlégl

Összefoglaló. Bevezetés: Nincs egységesen elfogadott álláspont, hogy a serdülőkori idiopathiás gerincferdülés sebészi korrekcióját melyik életkorban optimális elvégezni. Világszerte 11 éves kortól akár (kezeletlen esetben) 50–60 éves korig végeznek fúziós műtétet a betegségben, 63–83%-os átlagos koronális síkú korrekciós hatékonysággal. Célkitűzés: Célul tűztük ki, hogy felmérjük a gerinckorrekciós műtétek hatékonyságát három dimenzióban, illetve a páciens életkorának függvényében. Módszerek: A vizsgálatba 23, serdülőkori idiopathiás gerincferdüléssel diagnosztizált beteget (12 fő 17 évnél fiatalabb, 11 fő 17 évnél idősebb) vontunk be. Minden betegnél csavaros derotációt és spondylodesist végeztünk, és a beavatkozás előtt és után EOS 2D/3D felvételeket, majd sterEOS 3D rekonstrukciókat készítettünk. A következő paramétereket számítottuk: Cobb-fok, háti kyphosis, ágyéki lordosis, apicalis csigolyarotáció, maximális csigolyarotáció. A különböző életkorú csoportok közötti különbséget kétmintás t-próbával, illetve Wilcoxon-féle próbával vizsgáltuk. Eredmények: A gerinckorrekciós műtétek során a koronális síkú eltérést 78,2%-ban (átlagosan 55,1 Cobb-fokról 12,0 Cobb-fokra), az apicalis csigolyarotációt 56,7%-ban (átlagosan 21,0 fokról 9,1 fokra) tudtuk korrigálni. A 17 éves életkor után operált páciensek esetén átlagosan 79,2%-os Cobb-fok-csökkenést értünk el, míg a fiatalabb betegcsoportban 77,0%-ban korrigáltuk a koronális főgörbületet (p = 0,614). Az idősebb betegcsoportban szignifikánsan kevésbé sikerült az apicalis csigolyarotáció korrekciója (átlagosan 38,1%; 21,8 fokról 12,4 fokra), mint a fiatalabb pácienseknél (átlagosan 68,5%; 20,2 fokról 6,2 fokra; p = 0,016). Következtetés: Összességében a nemzetközi publikációknak megfelelő korrekciót értünk el. A koronális síkban közel azonos korrekciós hatékonyság figyelhető meg a különböző életkorú betegcsoportok között, a csigolyarotáció azonban 17 éves életkor előtt hatékonyabban korrigálható. Orv Hetil. 2021; 162(39): 1573–1578. Summary. Introduction: There is no clear recommendation for the optimal age to perform corrective surgery in adolescent idiopathic scoliosis. Fusion surgery is performed from the age of 11 to 50–60 years, with an average coronal plane correction efficiency of 63–83%. Objective: We aimed to evaluate the effectiveness of correction surgeries in three dimensions in adolescent idiopathic scoliosis. In addition, our objective was to examine the influence of the patient’s age on the correction. Methods: The study included 23 patients with adolescent idiopathic scoliosis (12 patients younger than 17 years, 11 patients older than 17 years). All patients underwent screw-derotation and spondylodesis and underwent EOS 2D/3D imaging before and after the operation, followed by sterEOS 3D reconstructions. The following parameters were calculated: Cobb degree, thoracic kyphosis, lumbar lordosis, apical vertebral rotation, maximal vertebral rotation. Differences between different age groups were examined by paired-sample t-test and Wilcoxon rank sum test. Results: The mean efficiency of correction surgeries was 78.2% in the coronal plane (from an average of 55.1 Cobb degrees to 12.0 Cobb degrees) and 56.7% in the axial plane (from an average of 21.0 degrees to 9.1 degrees). We achieved an average 79.2% reduction of Cobb angle in patients operated after the age of 17 years, which was 77.0% in the younger group (p = 0.614). Apical vertebral rotation correction was significantly less successful in the elderly group (mean 38.1%; from 21.8 degrees to 12.4 degrees) than in patients operated before the age of 17 years (mean 68.5%; from 20.2 degrees to 6.2 degrees; p = 0.016). Conclusion: We achieved scoliosis correction in line with the international publications. Nearly the same correction efficiency was observed between different age groups of patients in the coronal plane. However, vertebral rotation can be derotated more effectively before the age of 17 years. Orv Hetil. 2021; 162(39): 1573–1578.


2021 ◽  
Author(s):  
Shih-Hsiang Chou ◽  
Wen-Wei Li ◽  
Cheng-Chang Lu ◽  
Kun-Ling Lin ◽  
Sung-Yen Lin ◽  
...  

Abstract BackgroundEarly versions of spinal muscular atrophy (SMA) scoliosis correction surgeries often involved sublaminar devices. Recently the utilization of pedicle screw is gaining much popularity. Pedicle screw generally believed to provide additional deformity correction, but pedicle size and rotational deformity limit the application of pedicle screw in the thoracic spine, resulting in a hybrid construct of the pedicle screw and sublaminar wire. Studies of the efficacy of hybrid instrumentation in SMA scoliosis is often limited by the scarcity of the disease itself. In this study, we aimed to compare the surgical outcome of using hybrid constructs of the pedicle screw and sublaminar wire and that of sublaminar wire alone in patients with SMA scoliosis.MethodsWe retrospectively reviewed the clinical records and radiographic assessments of patients with SMA scoliosis who underwent corrective surgery between 1993 and 2015. The radiographic assessments included the deformity correction and the progressive change of major curve angle, pelvic tilt (PT) and coronal balance (CB). The correction of deformities was observed postoperatively and at the patient’s 2-year follow-up to test the efficacy of each type of constructs.ResultsThirty-three patients were included in this study. There were 14 and 19 patients in the wiring and the hybrid construct groups, respectively. The hybrid construct demonstrated a higher major curve angle correction (50.5° ± 11.2° vs. 36.4° ± 8.4°, p < 0.001), a higher apical vertebral rotation correction (10.6° ± 3.9° vs. 4.8° ± 2.6°, p < 0.001), and reduced the progression of major curve angle after the 2-year follow-up (5.1° ± 2.9° vs. 8.7° ± 4.8°, p < 0.001). A moderate correlation was observed between the magnitude of correction of apical vertebral rotation angle and major curve (r = 0.528, p = 0.002).ConclusionThis study demonstrated that hybrid instrumentation can provide a greater magnitude of correction in major curve and apical rotation, as well as less major curve progression in comparison with sublaminar wire in patients with SMA scoliosis.Level of evidence III


Author(s):  
X Wang ◽  
CE Aubin ◽  
RM Schwend

The objective was to assess deformity correction and bone-screw force associated respectively with concave manipulation first, convex manipulation first, and different differential rod contouring configurations. Instrumentation scenarios were computationally simulated for 10 AIS cases with mean thoracic Cobb angle (MT) of 54±8°, apical vertebral rotation (AVR) of 19±2° and thoracic kyphosis of 21±9°. Instrumentations with major correction maneuvers using the concave side rod were first simulated; instrumentations with major correction maneuvers using the convex side rod were then simulated. Simulated correction maneuvers were concave/convex rod translation followed by apical vertebral derotation and then convex/concave rod translation. There were no significant differences in deformity corrections and bone-screw forces between concave rod translation first and convex rod translation first with differential rod contouring. Increasing differential rod contouring angle and concave rod diameter improved AVR correction and increased the TK and bone-screw forces; the effect on the MT Cobb angle was not clinically significant.


Sign in / Sign up

Export Citation Format

Share Document