SUPPRESSION OF HPA-AXIS-ACTIVITY BY HALOPERIDOL AFTER EXPERIMENTALLY INDUCED HEAT STRESS

1992 ◽  
Vol 15 ◽  
pp. 455B
Author(s):  
J. Hennig ◽  
P. Netter ◽  
K. Brück
2013 ◽  
Vol 216 (12) ◽  
pp. 2302-2307 ◽  
Author(s):  
N. Jasnic ◽  
J. Djordjevic ◽  
P. Vujovic ◽  
I. Lakic ◽  
S. Djurasevic ◽  
...  

2008 ◽  
Author(s):  
Robina Khan ◽  
Katja Bertsch ◽  
Ewald Naumann ◽  
Menno R. Kruk ◽  
Patrick Britz ◽  
...  
Keyword(s):  
Hpa Axis ◽  

2004 ◽  
Vol 36 (05) ◽  
Author(s):  
D Eser ◽  
P Zwanzger ◽  
S Aicher ◽  
C Schüle ◽  
TC Baghai ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 425
Author(s):  
Fabrice Duval ◽  
Marie-Claude Mokrani ◽  
Alexis Erb ◽  
Felix Gonzalez Lopera ◽  
Vlad Danila ◽  
...  

The effects of antidepressants on dopamine (DA) receptor sensitivity in the mesolimbic–hypothalamic system have yielded contradictory results. The postsynaptic DA receptor function was evaluated by the cortisol response to apomorphine (APO; 0.75 mg SC) in 16 drug-free DSM-5 major depressed inpatients and 18 healthy hospitalized control (HC) subjects. Cortisol response to the dexamethasone suppression test (DST) was also measured. After two and four weeks of antidepressant treatment (ADT), the DST and APO test were repeated in all patients. Cortisol response to APO (∆COR) was not influenced by the hypothalamic–pituitary–adrenal (HPA) axis activity, as assessed by the DST. Pre-treatment ∆COR values did not differ significantly between patients and HCs. During ADT, ∆COR values were lower than in HCs at week 2 and 4. After four weeks of treatment, among the eight patients who had blunted ∆COR values, seven were subsequent remitters, while among the eight patients who had normal ∆COR values, seven were non-remitters. Considering the limitations of our study, the results suggest that following chronic ADT, the desensitization of postsynaptic DA receptors connected with the regulation of the HPA axis at the hypothalamic level is associated with clinical remission. These results could reflect increased DA levels in the mesolimbic pathway.


2021 ◽  
Vol 11 (15) ◽  
pp. 6902
Author(s):  
Eugene Huh ◽  
Wonil Lee ◽  
Yujin Choi ◽  
Tae Hee Lee ◽  
Myung Sook Oh

Heat stress induces the hypothalamic-pituitary-adrenal (HPA) axis activation, influences biological responses, and reduces energy metabolism. Geongangbuja-tang (GBT) and its components, Zingiberis Rhizoma (ZOR) and Aconiti Lateralis Radix Preparata (ALRP) have been used to induce energy metabolism; however, the effects of GBT and its ingredients on heat-induced inflammatory responses have not yet been investigated. In this study, we performed an open-field test to evaluate locomotor activity in mice. To assess the effects of GBT and its ingredients on inflammation, the protein levels of c-fos, pro-inflammatory cytokines, and cortisol were measured in the mouse hypothalamus and serum. The results showed that GBT alleviated locomotive activity and reduced c-fos levels in a dose-dependent manner under the heat exposure. After investigating the active constituent of GBT, we found that compared to GBT and ZOR, ALRP significantly suppressed c-fos expression under heat stress. Subsequently, ALRP decreased the expression of pro-inflammatory cytokines, such as interleukin-9 and -13 and prostaglandin, under the heat stress in the mouse hypothalamus. Moreover, treatment with ALRP inhibited cortisol secretion in the mouse serum following heat exposure. These results indicate that GBT and its active component, ALRP, could be the thermoregulatory agents that regulate the HPA axis.


Sign in / Sign up

Export Citation Format

Share Document