Influence of epidural anaesthesia on the relationship between the effect-site concentration of sevoflurane and BIS values after the end of surgery

2014 ◽  
Vol 31 ◽  
pp. 149-150
Author(s):  
K. Ogawa ◽  
K. Masui ◽  
Y. Sanjo ◽  
T. Kazama
2010 ◽  
Vol 113 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Agnes Rigouzzo ◽  
Frederique Servin ◽  
Isabelle Constant

Background The aim of this study was to identify the best model to describe pharmacokinetics and pharmacodynamics in prepubertal children and therefore to calculate the corresponding pharmacodynamic parameters. In addition, and to confirm our method, a group of postpubertal subjects was also studied. Methods Sixteen children (9.5 yr, range 6-12) and 13 adults (22 yr, range 13-35) were included. Induction was performed by plasma target-controlled infusion of propofol (6 microg/ml) based on the Kataria model in children and on the Schnider model in adults. The relationship of bispectral index to predicted concentrations was studied during induction using the Kataria, pediatric Marsh, Schüttler, and Schnider models in children. Because the best performance was obtained, strangely enough, with the Schnider model, the two groups were pooled to investigate influence of puberty on pharmacodynamic parameters (kE0 [plasma effect-site equilibration rate constant] and Ce50 [effect-site concentration corresponding with 50% of the maximal effect]). The time-to-peak effect was calculated, and the kE0 was determined for the Kataria model (nonlinear mixed-effects modeling; pkpdtools). Results In children, the predicted concentration/effect relationship was best described using the Schnider model. When the whole population was considered, a significant improvement in this model was obtained using puberty as a covariate for kE0 and Ce50. The time to peak effect, Tpeak (median, 0.71 [range, 0.37-1.64] and 1.73 [1.4-2.68] min), and the Ce50 (3.71 [1.88-4.4] and 3.07 [2.95-5.21] microg/ml) were shorter and higher, respectively, in children than in adults. The kE0 linked to the Kataria model was 4.6 [1.4-11] min. Conclusions In children, the predicted concentration/effect relationships were best described using the Schnider model described for adults compared with classic pediatric models. The study suggests that the Schnider model might be useful for propofol target-control infusion in children.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Young-Eun Jang ◽  
Sang-Hwan Ji ◽  
Ji-Hyun Lee ◽  
Eun-Hee Kim ◽  
Jin-Tae Kim ◽  
...  

Abstract Background Continuous infusion of propofol has been used to achieve sedation in children. However, the relationship between the effect-site concentration (Ce) of propofol and sedation scale has not been previously examined. The objective of this study was to investigate the relationship between the Ce of propofol and the University of Michigan Sedation Scale (UMSS) score in children with population pharmacodynamic modeling. Methods A total of 30 patients (aged 3 to 6 years) who underwent surgery under general anesthesia with propofol and remifentanil lasting more than 1 h were enrolled in this study. Sedation levels were evaluated using the UMSS score every 20 s by a 1 μg/mL stepwise increase in the Ce of propofol during the induction of anesthesia. The pharmacodynamic relationship between the Ce of propofol and UMSS score was analyzed by logistic regression with nonlinear mixed-effect modeling. Results The estimated Ce50 (95% confidence interval) of propofol to yield UMSS scores equal to or greater than n were 1.84 (1.54–2.14), 2.64 (2.20–3.08), 3.98 (3.66–4.30), and 4.78 (4.53–5.03) μg/mL for n = 1, 2, 3, and 4, respectively. The slope steepness for the relationship of the Ce versus sedative response to propofol (95% confidence interval) was 5.76 (4.00–7.52). Conclusions We quantified the pharmacodynamic relationship between the Ce of propofol and UMSS score, and this finding may be helpful to predict the sedation score at the target Ce of propofol in children. Trial registration http://www.clinicaltrials.gov (No.: NCT03195686, Date of registration: 22/06/2017).


2007 ◽  
Vol 24 (Supplement 39) ◽  
pp. 119
Author(s):  
S. Hagihira ◽  
H. Yamanaka ◽  
O. Nagata ◽  
M. Ozaki ◽  
T. Mashimo

2011 ◽  
Vol 61 (2) ◽  
pp. 127 ◽  
Author(s):  
Hyun Su Ri ◽  
Sang Wook Shin ◽  
Tae Kyun Kim ◽  
Seung Wan Baik ◽  
Ji Uk Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document