scholarly journals Protein Aggregation after Focal Brain Ischemia and Reperfusion

2001 ◽  
Vol 21 (7) ◽  
pp. 865-875 ◽  
Author(s):  
Bing-Ren Hu ◽  
Shorena Janelidze ◽  
Myron D. Ginsberg ◽  
Raul Busto ◽  
Miguel Perez-Pinzon ◽  
...  

Two hours of transient focal brain ischemia causes acute neuronal death in the striatal core region and a somewhat more delayed type of neuronal death in neocortex. The objective of the current study was to investigate protein aggregation and neuronal death after focal brain ischemia in rats. Brain ischemia was induced by 2 hours of middle cerebral artery occlusion. Protein aggregation was analyzed by electron microscopy, laser-scanning confocal microscopy, and Western blotting. Two hours of focal brain ischemia induced protein aggregation in ischemic neocortical neurons at 1 hour of reperfusion, and protein aggregation persisted until neuronal death at 24 hours of reperfusion. Protein aggregates were found in the neuronal soma, dendrites, and axons, and they were associated with intracellular membranous structures during the postischemic phase. High-resolution confocal microscopy showed that clumped protein aggregates surrounding nuclei and along dendrites were formed after brain ischemia. On Western blots, ubiquitinated proteins (ubi-proteins) were dramatically increased in neocortical tissues in the postischemic phase. The ubi-proteins were Triton-insoluble, indicating that they might be irreversibly aggregated. The formation of ubi-protein aggregates after ischemia correlated well with the observed decrease in free ubiquitin and neuronal death. The authors concluded that proteins are severely damaged and aggregated in neurons after focal ischemia. The authors propose that protein damage or aggregation may contribute to ischemic neuronal death.

Author(s):  
W.F. Marshall ◽  
K. Oegema ◽  
J. Nunnari ◽  
A.F. Straight ◽  
D.A. Agard ◽  
...  

The ability to image cells in three dimensions has brought about a revolution in biological microscopy, enabling many questions to be asked which would be inaccessible without this capability. There are currently two major methods of three dimensional microscopy: laser-scanning confocal microscopy and widefield-deconvolution microscopy. The method of widefield-deconvolution uses a cooled CCD to acquire images from a standard widefield microscope, and then computationally removes out of focus blur. Using such a scheme, it is easy to acquire time-lapse 3D images of living cells without killing them, and to do so for multiple wavelengths (using computer-controlled filter wheels). Thus, it is now not only feasible, but routine, to perform five dimensional microscopy (three spatial dimensions, plus time, plus wavelength).Widefield-deconvolution has several advantages over confocal microscopy. The two main advantages are high speed of acquisition (because there is no scanning, a single optical section is acquired at a time by using a cooled CCD camera) and the use of low excitation light levels Excitation intensity can be much lower than in a confocal microscope for three reasons: 1) longer exposures can be taken since the entire 512x512 image plane is acquired in parallel, so that dwell time is not an issue, 2) the higher quantum efficiently of a CCD detect over those typically used in confocal microscopy (although this is expected to change due to advances in confocal detector technology), and 3) because no pinhole is used to reject light, a much larger fraction of the emitted light is collected. Thus we can typically acquire images with thousands of photons per pixel using a mercury lamp, instead of a laser, for illumination. The use of low excitation light is critical for living samples, and also reduces bleaching. The high speed of widefield microscopy is also essential for time-lapse 3D microscopy, since one must acquire images quickly enough to resolve interesting events.


Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


2001 ◽  
Vol 34 (15) ◽  
pp. 5186-5191 ◽  
Author(s):  
Hiroshi Jinnai ◽  
Hiroshi Yoshida ◽  
Kohtaro Kimishima ◽  
Yoshinori Funaki ◽  
Yoshitsugu Hirokawa ◽  
...  

1994 ◽  
Vol 42 (11) ◽  
pp. 1413-1416 ◽  
Author(s):  
S L Erlandsen ◽  
E M Rasch

We investigated direct measurement of the DNA content of the parasitic intestinal flagellate Giardia lamblia through quantitation by Feulgen microspectrophotometry and also by visualization of Feulgen-stained DNA chromosomes within dividing cells by laser scanning confocal microscopy. Individual trophozoites of Giardia (binucleate) contained 0.144 +/- 0.018 pg of DNA/cell or 0.072 pg DNA/nucleus. Giardia lamblia cysts (quadranucleate) contained 0.313 +/- 0.003 pg DNA or 0.078 pg DNA/nucleus. The genome size (C) value per nucleus ranged between 6.5-7.1 x 10(7) BP for trophozoites and cysts, respectively. Confocal microscopic examination of Giardia trophozoites undergoing binary fission revealed five chromosome-like bodies within each nucleus. Further information about genome size and DNA content within different Giardia species may help to clarify the pivotal role of these primitive eukaryotic cells in evolutionary development.


2014 ◽  
Vol 926-930 ◽  
pp. 1124-1127
Author(s):  
Zhen Xun Jin ◽  
Li Li Zhang ◽  
Yan Wang ◽  
Lin Chuan Zeng ◽  
Yang Yu ◽  
...  

The aim of this study is to investigate the effects and mechanism of chloroquine (CQ) on the apoptosis induced by cisplatin in human gastric cancer BGC823 cells. MTT assay was used to detect the state of cell growth. The appearances of cellular apoptosis were detected by laser scanning confocal microscopy and light microscopy. The expressions of LC3 and p62 were detected by laser scanning confocal microscopy. MTT tests showed that the non-toxic dose of CQ could increase the inhibition rate of BGC823 cells induced by cisplatin. Under the light microscope, the ratio of apoptotic cells in the group treated with non-toxic dose of CQ combined with cisplatin was higher than that in the group treated with cisplatin alone. Hoechst33342 staining showed that the ratio of apoptotic cells in the combination group was higher than that in the cisplatin group. The expression and colocalization of LC3 and p62 proteins were significantly increased in the combination group. These results indicate that CQ can enhance the cell apoptosis induced by cisplatin in BGC823 cells, which is through the inhibition of autophagy.


Sign in / Sign up

Export Citation Format

Share Document