Acute effects of iloprost on blood pressure, heart rate, renal hemodynamics, diuresis, natriuresis, plasma renin activity and plasma norepinephrine in uninephrectomized hypertensive mongrel dogs

1991 ◽  
Vol 9 ◽  
pp. S354
Author(s):  
Eduardo Villa ◽  
Maria E. Moraíes ◽  
Javier Martinez ◽  
Adolfo de la Fuente ◽  
Alejandro Hurtado ◽  
...  
1983 ◽  
Vol 244 (1) ◽  
pp. R74-R77 ◽  
Author(s):  
J. Schwartz ◽  
I. A. Reid

The role of vasopressin in the regulation of blood pressure during water deprivation was assessed in conscious dogs with two antagonists of the vasoconstrictor activity of vasopressin. In water-replete dogs, vasopressin blockade caused no significant changes in mean arterial pressure, heart rate, plasma renin activity (PRA), or plasma corticosteroid concentration. In the same dogs following 48-h water deprivation, vasopressin blockade increased heart rate from 85 +/- 6 to 134 +/- 15 beats/min (P less than 0.0001), increased cardiac output from 2.0 +/- 0.1 to 3.1 +/- 0.1 1/min (P less than 0.005), and decreased total peripheral resistance from 46.6 +/- 3.1 to 26.9 +/- 3.1 U (P less than 0.001). Plasma renin activity increased from 12.4 +/- 2.2 to 25.9 +/- 3.4 ng ANG I X ml-1 X 3 h-1 (P less than 0.0001) and plasma corticosteroid concentration increased from 3.2 +/- 0.7 to 4.9 +/- 1.2 micrograms/dl (P less than 0.05). Mean arterial pressure did not change significantly. When the same dogs were again deprived of water and pretreated with the beta-adrenoceptor antagonist propranolol, the heart rate and PRA responses to the antagonists were attenuated and mean arterial pressure decreased from 103 +/- 2 to 91 +/- 3 mmHg (P less than 0.001). These data demonstrate that vasopressin plays an important role in blood pressure regulation during water deprivation in conscious dogs.


1981 ◽  
Vol 60 (4) ◽  
pp. 399-404 ◽  
Author(s):  
C. J. Mathias ◽  
H. L. Frankel ◽  
I. B. Davies ◽  
V. H. T. James ◽  
W. S. Peart

1. The effect of endogenous sympathetic stimulation (induced by urinary bladder stimulation) and intravenous infusion of noradrenaline and isoprenaline on blood pressure, heart rate and levels of plasma renin activity and plasma aldosterone were studied in six tetraplegic patients. Data from infusion studies were compared with data from six normal subjects studied in an identical manner. 2. Bladder stimulation in the tetraplegic patients caused a marked rise in blood pressure and fall in heart rate, but no change in plasma renin activity or plasma aldosterone. 3. Noradrenaline infusion resulted in an enhanced pressor response in the tetraplegic patients when compared with the normal subjects. Heart rate fell in both groups. Plasma renin activity and plasma aldosterone did not change in either group. 4. Isoprenaline infusion caused a fall in both systolic and diastolic blood pressure in the tetraplegic patients, unlike the normal subjects in whom there was a rise in systolic and a fall in diastolic blood pressure. Heart rate and plasma renin activity rose in both groups. Plasma aldosterone did not change in either group. 5. We conclude that in tetraplegic patients neither endogenous sympathetic stimulation by bladder stimulation nor infusion of noradrenaline raises plasma renin activity. Isoprenaline increases plasma renin activity to the same extent as in normal subjects. Renin release mechanisms in tetraplegic patients therefore do not appear to be hypersensitive to catecholamines. Plasma aldosterone is not influenced by any of the stimuli.


1982 ◽  
Vol 32 (4) ◽  
pp. 742-745 ◽  
Author(s):  
Yukio HASEGAWA ◽  
Takushi X. WATANABE ◽  
Koichiro KAWASHIMA ◽  
Hirofumi SOKABE ◽  
Ken SAITO

1988 ◽  
Vol 75 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Jan Staessen ◽  
Roberto Fiocchi ◽  
Roger Bouillon ◽  
Robert Fagard ◽  
Peter Hespel ◽  
...  

1. Physical effort involves, along with an increase in the plasma concentration of β-endorphin, profound adaptations of the circulation and the endocrine system. The effects of opioid antagonism on the responses of blood pressure, heart rate and several hormones to exercise were therefore studied in 10 normal men. They exercised in the supine position up to 33% and 66% of their maximal exercise capacity and received in a randomized double-blind cross-over protocol, either saline or naloxone (10 mg intravenously, followed by a continuous infusion of 10 mg/h). 2. Intra-arterial pressure and heart rate were continuously monitored, but were not affected by naloxone. 3. At rest, opioid antagonism produced a rise in plasma renin activity and in plasma adrenocorticotropin, Cortisol and aldosterone, but only the stimulation of the two adrenocortical hormones differed significantly from the control experiments; at rest naloxone also prevented the fall in plasma adrenaline, which occurred with saline infusion. Furthermore, the exercise-induced rises in plasma angiotensin II, aldosterone, Cortisol, noradrenaline and adrenaline were higher on naloxone than on saline, while a similar tendency was also present for the increases with exercise in plasma renin activity and plasma adrenocorticotropin. Neither at rest nor during exercise did opioid antagonism alter plasma lactate and glucose and serum insulin and growth hormone. 4. In conclusion, (1) endogenous opioids are not involved in the responses of blood pressure and heart rate to supine exercise; (2) at rest and during exercise, the endogenous opioids inhibit the secretion of adrenocorticotropin, aldosterone, Cortisol, noradrenaline and adrenaline; (3) they also inhibit the plasma renin-angiotensin II system indirectly via the catecholamines.


1976 ◽  
Vol 41 (3) ◽  
pp. 323-327 ◽  
Author(s):  
K. J. Kosunen ◽  
A. J. Pakarinen ◽  
K. Kuoppasalmi ◽  
H. Adlercreutz

Plasma renin activity (PRA), angiotensin II, and aldosterone levels, arterial blood pressure, and heart rate of six male students were investigated during and after heat stress in a sauna bath. Increased PRA, angiotensin II, and aldosterone levels were found both during and after sauna. The greatest mean increases in PRA (94.9 +/- 10.4% SE, P less than 0.005) and angiotensin II (196 +/- 54.7% SE, P less than 0.02) were observed at the end of the heat stress (at 20 min), and that in plasma aldosterone (505 +/- 209% SE, P less than 0.02) 30 min after the sauna. The heart rate roughly doubled during the heat stress and there was a transient increase followed by a decrease in systolic blood pressure and a decrease in diastolic blood pressure. This study demonstrates that intense heat stress can cause remarkable changes in the three main components of the renin-angiotensin-aldosterone system.


1988 ◽  
Vol 254 (3) ◽  
pp. H509-H516 ◽  
Author(s):  
M. Burnier ◽  
B. Waeber ◽  
J. F. Aubert ◽  
J. Nussberger ◽  
H. R. Brunner

A nonhypotensive dose of endotoxin was administered to normal conscious rats to evaluate the vascular and humoral effects of endotoxemia per se. Mean blood pressure and heart rate remained stable during the 45 min infusion of Escherichia coli endotoxin (0.01 mg/min). However, a marked increase in plasma renin activity (4.2 +/- 0.48 vs. 30.2 +/- 6 ng.ml-1.h-1, mean +/- SE, P less than 0.01), plasma epinephrine (0.112 +/- 0.04 vs. 1.71 +/- 0.5 ng/ml, P less than 0.01), and plasma norepinephrine (0.269 +/- 0.028 vs. 1.3 +/- 0.2 ng/ml, P less than 0.001) was observed during infusion in endotoxin-treated rats when compared with the vehicle-treated animals. In addition, the blood pressure response to exogenous norepinephrine was significantly reduced during nonhypotensive endotoxemia. Significant changes in regional blood flow distribution, as assessed by radiolabeled microspheres, were observed in endotoxemic rats; in particular a decrease in renal blood flow (7.39 +/- 0.43 vs. 5.97 +/- 0.4 ml.min-1.g-1, P less than 0.05) and an increase in coronary blood flow (5.01 +/- 0.38 vs. 6.44 +/- 0.33 ml.min-1.g-1, P less than 0.01) were found. The role of prostaglandins in the vascular and humoral alterations induced by nonhypotensive endotoxemia was also examined. Pretreatment with indomethacin (5 mg) prevented the increase in plasma renin activity as well as plasma catecholamine levels. On the contrary, the decreased vascular reactivity and the reduction in renal blood flow observed during endotoxemia were not affected by prostaglandin synthesis inhibition. Thus significant vascular and humoral changes have been found during endotoxemia even in absence of hypotension.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document