Effect of Low-Dose Treatment with Perindopril on Cardiac Function in Stroke-Prone Spontaneously Hypertensive Rats

1994 ◽  
Vol 24 (3) ◽  
pp. 462-469 ◽  
Author(s):  
Peter Gohlke ◽  
Ingo Kuwer ◽  
Susanne Bartenbach ◽  
Angela Schnell ◽  
Thomas Unger
2007 ◽  
Vol 0 (0) ◽  
pp. 071031221357009-??? ◽  
Author(s):  
Luisa MG de Macedo Braga ◽  
Kaleizu Rosa ◽  
Bruno Rodrigues ◽  
Christiane Malfitano ◽  
Melissa Camassola ◽  
...  

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Mirian Almeida Silva‐Cutini ◽  
Simone Alves Almeida ◽  
Andrews Marques Nascimento ◽  
Glaucia Rodrigues Abreu ◽  
Nazaré Souza Bissoli ◽  
...  

1998 ◽  
Vol 76 (1) ◽  
pp. 63-67 ◽  
Author(s):  
María Reverte ◽  
Olga Flores ◽  
Belén Gallego ◽  
Antonio Lestón ◽  
José Miguel López-Novoa

We have studied during 30 days the effect of a low dose of NG-nitro-L-arginine methyl ester (1 mg ·kg-1 ·day-1 in drinking water) in the presence of D- or L-arginine (1 mg ·kg-1 ·day-1 in drinking water) in comparison with D- or L-arginine alone on blood pressure and renal function in conscious uninephrectomized female spontaneously hypertensive rats. At the end of the study, there was a significant increase in systolic blood pressure in the NG-nitro-L-arginine methyl ester + D-arginine group (307 ± 6 mmHg (1 mmHg = 133.3 Pa), n = 14, p << 0.05) in comparison with NG-nitro-L-arginine methyl ester + L-arginine (281 ± 6 mmHg, n = 14), L-arginine (262 ± 5 mmHg, n = 13), and D-arginine (258 ± 7 mmHg, n = 12) groups. There were no changes in diuresis, proteinuria, or sodium and potassium excretion between differently treated animals during this study. These results suggest that in uninephrectomized female spontaneously hypertensive rats, after 1 month blockade of NO synthesis with a low dose of NG-nitro-L-arginine methyl ester, vasculature is under tonic control by NO and it is not correlated with renal dysfunction.Key words: Key words: NG -nitro-L-arginine methyl ester (L-NAME), kidney, hypertension, spontaneously hypertensive rats, renaldysfunction, uninephrectomy.


Author(s):  
Francine Duchatsch ◽  
Lidieli P. Tardelli ◽  
Naiara A. Herrera ◽  
Thalles F. R. Ruiz ◽  
Carlos A. Vicentini ◽  
...  

Introduction: Dexamethasone (DEX)-induced hypertension and cardiac remodeling are still unclear, especially in spontaneously hypertensive rats (SHR). On the other side, exercise training is a good strategy to control hypertension. Therefore, this study investigated the effects of DEX treatment and physical training on arterial pressure and cardiac remodeling in SHR. Material and Methods: SHR underwent treadmill training (5 days/week, 1h/session, at 50-60% of maximal capacity, 0% degree, 75 days) and received low-dose of DEX (50µg/kg, s.c.) during the last 15 days. Sedentary Wistar rats (W) were used as control. Echocardiography and artery catheterization were performed for cardiac remodeling and function, arterial pressure and autonomic nervous system analyses. In addition, left ventricle (LV) capillary density, myocyte diameter and collagen deposition area were analyzed using specific histological staining. Results: Low-dose of DEX treatment did not exacerbate arterial pressure of SHR and trained groups had lower values, regardless of DEX. DEX and training decreased relative left ventricle wall thickness (RWT) and determined LV angiogenesis (+19%) and lower collagen deposition area (−22%). In addition, it determined increased left ventricular diastolic diameter. These changes were followed by improvements on systolic and diastolic function, since it was observed increased posterior wall shortening velocity (PWSV) and reduced isovolumetric relaxation time (IVRT). Conclusion: In conclusion, this study is unique to indicate that low-dose of DEX treatment does not exacerbate arterial pressure in SHR and, when associated with training, it improves LV systolic and diastolic function, which may be due to LV angiogenesis and reduction of wall collagen deposition area.


2005 ◽  
Vol 23 (12) ◽  
pp. 2277-2285 ◽  
Author(s):  
Jihong Xu ◽  
Annedore Scholz ◽  
Nicole Rösch ◽  
Annegret Blume ◽  
Thomas Unger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document