Dexamethasone and Training-Induced Cardiac Remodeling Improve Cardiac Function and Arterial Pressure in Spontaneously Hypertensive Rats

Author(s):  
Francine Duchatsch ◽  
Lidieli P. Tardelli ◽  
Naiara A. Herrera ◽  
Thalles F. R. Ruiz ◽  
Carlos A. Vicentini ◽  
...  

Introduction: Dexamethasone (DEX)-induced hypertension and cardiac remodeling are still unclear, especially in spontaneously hypertensive rats (SHR). On the other side, exercise training is a good strategy to control hypertension. Therefore, this study investigated the effects of DEX treatment and physical training on arterial pressure and cardiac remodeling in SHR. Material and Methods: SHR underwent treadmill training (5 days/week, 1h/session, at 50-60% of maximal capacity, 0% degree, 75 days) and received low-dose of DEX (50µg/kg, s.c.) during the last 15 days. Sedentary Wistar rats (W) were used as control. Echocardiography and artery catheterization were performed for cardiac remodeling and function, arterial pressure and autonomic nervous system analyses. In addition, left ventricle (LV) capillary density, myocyte diameter and collagen deposition area were analyzed using specific histological staining. Results: Low-dose of DEX treatment did not exacerbate arterial pressure of SHR and trained groups had lower values, regardless of DEX. DEX and training decreased relative left ventricle wall thickness (RWT) and determined LV angiogenesis (+19%) and lower collagen deposition area (−22%). In addition, it determined increased left ventricular diastolic diameter. These changes were followed by improvements on systolic and diastolic function, since it was observed increased posterior wall shortening velocity (PWSV) and reduced isovolumetric relaxation time (IVRT). Conclusion: In conclusion, this study is unique to indicate that low-dose of DEX treatment does not exacerbate arterial pressure in SHR and, when associated with training, it improves LV systolic and diastolic function, which may be due to LV angiogenesis and reduction of wall collagen deposition area.

2017 ◽  
Vol 312 (5) ◽  
pp. R835-R849 ◽  
Author(s):  
Suzan Al-Gburi ◽  
Andreas J. Deussen ◽  
Roberta Galli ◽  
Michael H. Muders ◽  
Birgit Zatschler ◽  
...  

Evidence of sex-specific differences in renin-angiotensin-system (RAS) and arterial pressure has been shown in many mammals, including spontaneously hypertensive rats (SHRs). Although SHRs have been used extensively as a leading experimental model of hypertension, the effects of sex-specific differences in RAS on aortic function and related cardiac remodeling during aging and hypertension have not been documented in detail. We examined structural and functional changes in aorta and heart of female and male SHRs at the ages of 5, 14, 29, and 36 wk. SHRs of both sexes were hypertensive from 14 wk. Aortic endothelial dysfunction and fibrosis, left ventricular (LV) hypertrophy, and cardiac fibrosis were evident at the age of 29 wk in male SHRs but first appeared only at the age of 36 wk in female SHRs. There was a pronounced delay of matrix metalloproteinase-2 activity in the aorta and heart of female SHRs, which was associated with preservation of 40% more elastin and less extensive cardiac fibrosis than in males. At 5, 29, and 36 wk of age, female SHRs showed higher levels of aortic and myocardial AT2R and MasR mRNA and decreased ANG II-mediated aortic constriction. Although female SHRs had increased relaxation to AT2R stimulation at 5 and 29 wk compared with males, this difference disappeared at 36 wk of age. This study documents sex-specific differences in the temporal progression of aortic dysfunction and LV hypertrophy in SHRs, which are independent of arterial pressure and are apparently mediated by higher AT2R expression in the heart and aorta of female SHRs.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Toru Kawada ◽  
Takuya Nishikawa ◽  
Satoru Suehara ◽  
Satoshi Sawada ◽  
Tetsuo Tanaka ◽  
...  

AbstractPrimary acute sympathetic activation (PASA) causes a subsequent arterial pressure (AP) elevation. In this case, an antidiuretic effect via the renal innervation and pressure diuresis can act antagonistically on the kidneys. We examined the effect of PASA on urine output in spontaneously hypertensive rats (SHR) 4–7 days after unilateral renal denervation (RDN) (n = 9). The slope of the plot of urine flow versus AP was positive (0.120 ± 0.031 μL min−1 kg−1 mmHg−1) on the intact side, but it was less than 1/3 of the slope observed previously in normotensive Wistar–Kyoto rats (WKY). RDN did not normalize the slope of urine flow versus AP (0.179 ± 0.025 μL min−1 kg−1 mmHg−1, P = 0.098 versus the intact side). The urine flow at the operating point of the AP tended to be greater on the denervated than the intact side (29.0 ± 1.8 vs. 25.3 ± 1.9 μL min−1 kg−1, P = 0.055). The percent increase (17.2 ± 7.2%) was not different from that observed previously in WKY. Although high-resting sympathetic nerve activity is prerequisite for maintaining hypertension in SHR, the effect of sympathetic innervation on the urine output function was not greater than that in WKY.


2007 ◽  
Vol 292 (2) ◽  
pp. H814-H819 ◽  
Author(s):  
Luis C. Matavelli ◽  
Xiaoyan Zhou ◽  
Jasmina Varagic ◽  
Dinko Susic ◽  
Edward D. Frohlich

We have previously shown that salt excess has adverse cardiac effects in spontaneously hypertensive rats (SHR), independent of its increased arterial pressure; however, the renal effects have not been reported. In the present study we evaluated the role of three levels of salt loading in SHR on renal function, systemic and renal hemodynamics, and glomerular dynamics. At 8 wk of age, rats were given a 4% ( n = 11), 6% ( n = 9), or 8% ( n = 11) salt-load diet for the ensuing 8 wk; control rats ( n = 11) received standard chow (0.6% NaCl). Rats had weekly 24-h proteinuria and albuminuria quantified. At the end of salt loading, all rats had systemic and renal hemodynamics measured; glomerular dynamics were specially studied by renal micropuncture in the control, 4% and 6% salt-loaded rats. Proteinuria and albuminuria progressively increased by the second week of salt loading in the 6% and 8% salt-loaded rats. Mean arterial pressure increased minimally, and glomerular filtration rate decreased in all salt-loaded rats. The 6% and 8% salt-loaded rats demonstrated decreased renal plasma flow and increased renal vascular resistance and serum creatinine concentration. Furthermore, 4% and 6% salt-loaded rats had diminished single-nephron plasma flow and increased afferent and efferent arteriolar resistances; glomerular hydrostatic pressure also increased in the 6% salt-loaded rats. In conclusion, dietary salt loading as low as 4% dramatically deteriorated renal function, renal hemodynamics, and glomerular dynamics in SHR independent of a minimal further increase in arterial pressure. These findings support the concept of a strong independent causal relationship between salt excess and cardiovascular and renal injury.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tomomi Nagayama ◽  
Yoshitaka Hirooka ◽  
Akiko Chishaki ◽  
Masao Takemoto ◽  
Yasushi Mukai ◽  
...  

Objective.Many previous clinical studies have suggested that atrial fibrillation (AF) is closely associated with hypertension. However, the benefits of antihypertensive therapy on AF are still inconsistent, and it is necessary to explore the factors augmenting AF in hypertensive rats. The aim of the present study was to investigate the correlation between arterial pressure or voltage stimulus and to the duration of electrically induced AF in normotensive or hypertensive rats.Methods.AF was reproducibly induced by transesophageal atrial burst pacing in spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). We did the burst pacing at high (20 V) or low (5 V) voltage.Results.Duration of AF did not correlate with systolic blood pressure (SBP) and stimulus voltage in WKY. However, only in SHR, duration of AF with high stimulus voltage significantly correlated with SBP and was significantly longer in high than in low voltage stimulus.Discussion and Conclusion.Duration of AF is augmented by high voltage stimulus with higher blood pressure in SHR.


2013 ◽  
Vol 12 (1) ◽  
pp. 152 ◽  
Author(s):  
Camila Rosa ◽  
Natasha Xavier ◽  
Dijon Henrique Campos ◽  
Ana Angélica Fernandes ◽  
Marcelo Diarcadia Cezar ◽  
...  

1998 ◽  
Vol 76 (1) ◽  
pp. 63-67 ◽  
Author(s):  
María Reverte ◽  
Olga Flores ◽  
Belén Gallego ◽  
Antonio Lestón ◽  
José Miguel López-Novoa

We have studied during 30 days the effect of a low dose of NG-nitro-L-arginine methyl ester (1 mg ·kg-1 ·day-1 in drinking water) in the presence of D- or L-arginine (1 mg ·kg-1 ·day-1 in drinking water) in comparison with D- or L-arginine alone on blood pressure and renal function in conscious uninephrectomized female spontaneously hypertensive rats. At the end of the study, there was a significant increase in systolic blood pressure in the NG-nitro-L-arginine methyl ester + D-arginine group (307 ± 6 mmHg (1 mmHg = 133.3 Pa), n = 14, p << 0.05) in comparison with NG-nitro-L-arginine methyl ester + L-arginine (281 ± 6 mmHg, n = 14), L-arginine (262 ± 5 mmHg, n = 13), and D-arginine (258 ± 7 mmHg, n = 12) groups. There were no changes in diuresis, proteinuria, or sodium and potassium excretion between differently treated animals during this study. These results suggest that in uninephrectomized female spontaneously hypertensive rats, after 1 month blockade of NO synthesis with a low dose of NG-nitro-L-arginine methyl ester, vasculature is under tonic control by NO and it is not correlated with renal dysfunction.Key words: Key words: NG -nitro-L-arginine methyl ester (L-NAME), kidney, hypertension, spontaneously hypertensive rats, renaldysfunction, uninephrectomy.


1994 ◽  
Vol 77 (3) ◽  
pp. 1101-1107 ◽  
Author(s):  
S. P. Janssens ◽  
B. T. Thompson ◽  
C. R. Spence ◽  
C. A. Hales

Chronic hypoxic pulmonary hypertension involves both vasoconstriction and vascular remodeling. Spontaneously hypertensive rats (SHR) have an increased systemic vascular resistance and a greater responsiveness to constricting stimuli. We hypothesized that, in contrast to age-matched normotensive Wistar-Kyoto rats (WKY), SHR also display spontaneous pulmonary hypertension in normoxia and increased vascular response to acute and chronic hypoxia. Baseline mean pulmonary arterial pressure (PAP) and total pulmonary resistance (TPR) were higher in SHR than in WKY. With acute hypoxia (10% O2 for 15 min), PAP increased to the same extent in SHR and WKY and cardiac output (CO) was unchanged in WKY but increased in SHR. Thus, the rise in PAP in the SHR might be accounted for by the rise in CO, as TPR did not rise, but not that in the WKY, as TPR increased. After 12 days in hypoxia (10% O2), mean arterial pressure was unchanged in WKY but decreased significantly in SHR without a change in CO. PAP increased by 59% in SHR and 54% in WKY when the rats were taken from the hypoxic chamber for 1 h. Acute hypoxic challenge caused a further increase in PAP only in WKY. Medial wall thickness of alveolar duct and terminal bronchial vessels was similar in WKY and SHR after chronic hypoxia. We conclude that SHR exhibit mild baseline pulmonary hypertension in normoxia and that chronic hypoxia does not produce a disproportionate increase in SHR pulmonary vascular remodeling and pulmonary hypertension.


Sign in / Sign up

Export Citation Format

Share Document