Growth, growth hormone, and anterior pituitary disease

1990 ◽  
Vol 2 (4) ◽  
pp. 794-800
Author(s):  
Kerstin Albertsson-Wikland
1973 ◽  
Vol 134 (4) ◽  
pp. 1103-1113 ◽  
Author(s):  
A. Betteridge ◽  
M. Wallis

The effect of insulin on the incorporation of radioactive leucine into growth hormone was investigated by using rat anterior pituitary glands incubated in vitro. A 50% stimulation over control values was observed at insulin concentrations above 2μm (280munits/ml). The effect was specific for growth hormone biosynthesis, over the range 1–5μm-insulin (140–700munits/ml). Lower more physiological concentrations had no significant effect in this system. Above 10μm (1.4 units/ml) total protein synthesis was also increased. The stimulation of growth hormone synthesis could be partially blocked by the addition of actinomycin D, suggesting that RNA synthesis was involved. Insulin was found to stimulate the rate of glucose utilization in a similar way to growth hormone synthesis. 2-Deoxyglucose and phloridzin, which both prevented insulin from stimulating glucose utilization, also prevented the effect of insulin on growth hormone synthesis. If glucose was replaced by fructose in the medium, the effect of insulin on growth hormone synthesis was decreased. We conclude that the rate of utilization of glucose may be an important step in mediating the effect of insulin on growth hormone synthesis.


1953 ◽  
Vol 54 (3) ◽  
pp. 407-413 ◽  
Author(s):  
A. L. Greenbaum ◽  
Patricia McLean

2000 ◽  
Vol 78 (3) ◽  
pp. 329-343 ◽  
Author(s):  
Anderson OL Wong ◽  
Wen Sheng Li ◽  
Eric KY Lee ◽  
Mei Yee Leung ◽  
Lai Yin Tse ◽  
...  

Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel member of the secretin-glucagon peptide family. In mammals, this peptide has been located in a wide range of tissues and is involved in a variety of biological functions. In lower vertebrates, especially fish, increasing evidence suggests that PACAP may function as a hypophysiotropic factor regulating pituitary hormone secretion. PACAP has been identified in the brain-pituitary axis of representative fish species. The molecular structure of fish PACAP is highly homologous to mammalian PACAP. The prepro-PACAP in fish, however, is distinct from that of mammals as it also contains the sequence of fish GHRH. In teleosts, the anterior pituitary is under direct innervation of the hypothalamus and PACAP nerve fibers have been identified in the pars distalis. Using the goldfish as a fish model, mRNA transcripts of PACAP receptors, namely the PAC1 and VPAC1 receptors, have been identified in the pituitary as well as in various brain areas. Consistent with the pituitary expression of PACAP receptors, PACAP analogs are effective in stimulating growth hormone (GH) and gonadotropin (GTH)-II secretion in the goldfish both in vivo and in vitro. The GH-releasing action of PACAP is mediated via pituitary PAC1 receptors coupled to the adenylate cyclase-cAMP-protein kinase A and phospholipase C-IP3-protein kinase C pathways. Subsequent stimulation of Ca2+ entry through voltage-sensitive Ca2+ channels followed by activation of Ca2+-calmodulin protein kinase II is likely the downstream mechanism mediating PACAP-stimulated GH release in goldfish. Although the PACAP receptor subtype(s) and the associated post-receptor signaling events responsible for PACAP-stimulated GTH-II release have not been characterized in goldfish, these findings support the hypothesis that PACAP is produced in the hypothalamus and delivered to the anterior pituitary to regulate GH and GTH-II release in fish.Key words: PACAP, VIP, PAC1 receptor, VPAC1 receptor, VPAC2 receptor, growth hormone, gonadotropin-II, cAMP, protein kinase A, protein kinase C, calcium, pituitary cells, goldfish, and teleost.


1953 ◽  
Vol 83 (4) ◽  
pp. 758-761 ◽  
Author(s):  
P. P. Foa ◽  
E. B. Magid ◽  
M. D. Glassman ◽  
H. R. Weinstein

1966 ◽  
Vol 100 (3) ◽  
pp. 593-600 ◽  
Author(s):  
M Wallis ◽  
HBF Dixon

1. A method is described for the chromatographic preparation of ox growth hormone. It involves chromatography of an extract of anterior pituitary lobes on DEAE-cellulose, followed by rechromatography on a dextran gel of low cross-linkage (Sephadex G-100). 2. The product is highly active in growth-hormone assays, and is obtained in good yield. It was homogeneous by several criteria, but showed some heterogeneity on starch-gel electrophoresis. 3. The molecular weight of the hormone was estimated from its behaviour on gel-filtration columns under various conditions. Evidence that the hormone may dissociate into sub-units under some conditions is presented.


1992 ◽  
Vol 12 (6) ◽  
pp. 2624-2632
Author(s):  
D Murphy ◽  
K Pardy ◽  
V Seah ◽  
D Carter

In thyroid hormone-depleted rats, the rate of transcription of the growth hormone (GH) gene in the anterior pituitary gland is lower than the rate in euthyroid controls, and there is a corresponding reduction in the abundance of the GH mRNA. Concomitantly, the poly(A) tail of the GH mRNA increases in length. Examination of nuclear RNA from anterior pituitary glands of control and thyroid hormone-depleted rats revealed no difference in the length of pre-mRNAs containing the first and last introns of the GH gene. However, mature nuclear GH RNA is differentially polyadenylated in euthyroid and hypothyroid animals. We suggest that the extent of polyadenylation of the GH transcript is regulated in the cell nucleus concomitant with or subsequent to the splicing of the pre-mRNA. Experiments with anterior pituitary gland explant cultures demonstrated that the GH mRNA from thyroid hormone-depleted rats is more stable than its euthyroid counterpart and that the poly(A) tail may contribute to the differential stability of free GH ribonucleoproteins.


Sign in / Sign up

Export Citation Format

Share Document