A SIMPLE, INVERSE MODEL FOR ESTIMATING NITROGEN REACTION RATES FROM SOIL COLUMN LEACHING EXPERIMENTS AT STEADY WATER FLOW

Soil Science ◽  
1992 ◽  
Vol 154 (6) ◽  
pp. 490-496 ◽  
Author(s):  
T. YAMAGUCHI ◽  
P. MOLDRUP ◽  
D. E. ROLSTON ◽  
J. AA. HANSEN
2011 ◽  
Vol 414 ◽  
pp. 121-125
Author(s):  
Xiao Nan Sun ◽  
An Ping Liu ◽  
Xiu Rong Chen ◽  
Shu Chang Jin

This paper discusses the migration of the total petroleum hydrocarbon (TPH) contamination, which concludes the migration rule of the TPH contamination through designing indoor soil column leaching experiments. Through researching the migration concentration of TPH in different leaching amount, results shows that the ability of migration of TPH is more powerful when there is more leaching amount. But overall, the affection caused by different leaching amount is not obvious. The results of this research can provide guidance to the nonproliferation and remediation of petroleum contamination.


2010 ◽  
Vol 30 (4) ◽  
pp. 565-571 ◽  
Author(s):  
Sarynna López Meza ◽  
Ute Kalbe ◽  
Wolfgang Berger ◽  
Franz-Georg Simon

2000 ◽  
Vol 23 (4) ◽  
pp. 413 ◽  
Author(s):  
RC Chaney ◽  
KR Demars ◽  
RCK Wong ◽  
R Wibowo
Keyword(s):  

2012 ◽  
Vol 125-126 ◽  
pp. 16-23 ◽  
Author(s):  
Evelien Martens ◽  
Hongguang Zhang ◽  
Henning Prommer ◽  
Janek Greskowiak ◽  
Matthew Jeffrey ◽  
...  

Soil Research ◽  
2007 ◽  
Vol 45 (4) ◽  
pp. 310 ◽  
Author(s):  
Iris Vogeler ◽  
Adeline Blard ◽  
Nanthi Bolan

Effects of nitrogen losses through nitrate leaching are one of the major environmental issues worldwide. To determine the potential effect of dicyandiamide (DCD), a nitrification inhibitor, on the transformation of urea nitrogen and subsequent nitrate leaching, incubation and column leaching experiments were performed. Tokomaru silt loam soil was treated with urea, DCD, or urea plus DCD. A control was also used. In the laboratory incubation experiment, the conversion of urea to ammonium (i.e. ammonification process or urea hydrolysis) occurred within a day, thereby increasing the soil pH from 5.8 to 6.9. DCD did not affect the ammonification process. However, DCD did slow down the subsequent oxidation of ammonium to nitrate (i.e. nitrification process). The half-life time of ammonium in this soil was increased from 9 days for the urea treatment to 31 days for the urea + DCD treatment. The production of nitrate was 5 times slower when DCD was added. In the leaching experiments, half the columns were leached after 1 day of incubation (Day 1), the other half 7 days later (Day 7). For Day 1, no significant differences in nitrate leaching could be seen between the treatments, as the nitrification had not yet taken place. For Day 7, DCD decreased nitrate leaching by 71% with a corresponding decrease in nitrate-induced cation leaching, including ammonium. Thus, DCD seems to be effective in decreasing both ammonium and nitrate leaching, but its high solubility and thus mobility could be a limitation to its use. The convection–dispersion equation, including source–sink terms for nitrogen transformations, ammonification, and nitrification rate constants, and a factor for nitrification inhibition by DCD, accounting for degradation and efficiency of DCD, could be used reasonably well to simulate nitrate leaching from the column leaching experiments. However, model parameter values for nitrification rate, and efficiency and decay rate for DCD, were different from those obtained from the incubation experiments, which was probably because of the difference in water content of soil between the incubation and leaching experiments.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 265 ◽  
Author(s):  
Benjamin Hildebrant ◽  
Arnaud Igor Ndé-Tchoupé ◽  
Mesia Lufingo ◽  
Tobias Licha ◽  
Chicgoua Noubactep

Studies were undertaken to characterize the intrinsic reactivity of Fe0-bearing steel wool (Fe0 SW) materials using the ethylenediaminetetraacetate method (EDTA test). A 2 mM Na2-EDTA solution was used in batch and column leaching experiments. A total of 15 Fe0 SW specimens and one granular iron (GI) were tested in batch experiments. Column experiments were performed with four Fe0 SW of the same grade but from various suppliers and the GI. The conventional EDTA test (0.100 g Fe0, 50 mL EDTA, 96 h) protocol was modified in two manners: (i) Decreasing the experimental duration (down to 24 h) and (ii) decreasing the Fe0 mass (down to 0.01 g). Column leaching studies involved glass columns filled to 1/4 with sand, on top of which 0.50 g of Fe0 was placed. Columns were daily gravity fed with EDTA and effluent analyzed for Fe concentration. Selected reactive Fe0 SW specimens were additionally investigated for discoloration efficiency of methylene blue (MB) in shaken batch experiments (75 rpm) for two and eight weeks. The last series of experiments tested six selected Fe0 SW for water defluoridation in Fe0/sand columns. Results showed that (i) the modifications of the conventional EDTA test enabled a better characterization of Fe0 SW; (ii) after 53 leaching events the Fe0 SW showing the best kEDTA value released the lowest amount of iron; (iii) all Fe0 specimens were efficient at discoloring cationic MB after eight weeks; (iv) limited water defluoridation by all six Fe0 SW was documented. Fluoride removal in the column systems appears to be a viable tool to characterize the Fe0 long-term corrosion kinetics. Further research should include correlation of the intrinsic reactivity of SW specimens with their efficiency at removing different contaminants in water.


2020 ◽  
Vol 1012 ◽  
pp. 167-172
Author(s):  
Elizabeth Mendes de Oliveira ◽  
Izabella Christynne Ribeiro Pinto Valadão ◽  
Jose Adilson de Castro ◽  
Leonardo Martins da Silval ◽  
Darlene Souza da Silva ◽  
...  

The stability of nanoparticles in natural aquatic systems is of great interest to the environmental risk assessment. The relevance of this study lies in the fact that nanoparticles are being produced and used in commercial products on a large scale, which makes the need to study its transport through the environment, especially in soil and water important due to their potential interactions with the ecosystems. In this research, the effects of nanoparticles of zinc oxide (NPZnO) in the behavior of nanoparticles of titanium dioxide (NPTiO2) was investigated. The influence of pH, ionic strength and zeta potential of the hazardous nanoparticles into soil landfills are studied using experimental procedures. Leaching experiments were prepared within soil column simulating landfills layers. Leaching experiments were carried out to simulate the capture and attenuation of these nanomaterials in municipal waste landfills. The results found that the presence of NPTiO2 in suspensions increases the stability of the suspensions keeping higher nanoparticles concentrations, while NPZnO promotes rapid sedimentation with lower equilibrium concentration of nanoparticles.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Miao Yu ◽  
Martine der Ploeg ◽  
Xiaoyi Ma ◽  
Coen J Ritsema ◽  
Violette Geissen

Sign in / Sign up

Export Citation Format

Share Document