TRANSCRIPTION FACTOR PROFILING OF PANCREATIC ACINAR CELLS FOLLOWING TNF-α INDUCTION OF ACUTE PANCREATITIS.

Shock ◽  
2003 ◽  
Vol 19 (Supplement) ◽  
pp. 20
Author(s):  
L. Vona-Davis ◽  
K. Magabo ◽  
B. Jackson ◽  
T. Evans ◽  
D. Riggs ◽  
...  
2011 ◽  
Vol 301 (4) ◽  
pp. G694-G706 ◽  
Author(s):  
Tae-Hyeon Kim ◽  
Gi-Sang Bae ◽  
Hyo-Jeong Oh ◽  
Min-Sun Kim ◽  
Kyoung-Chel Park ◽  
...  

Acute pancreatitis (AP) is an inflammatory disease involving acinar cell injury and rapid production and release of inflammatory cytokines, which play a dominant role in local pancreatic inflammation and systemic complications. 2′,4′,6′-Tris (methoxymethoxy) chalcone (TMMC), a synthetic chalcone derivative, displays potent anti-inflammatory effects. Therefore, we aimed to investigate whether TMMC might affect the severity of AP and pancreatitis-associated lung injury in mice. We used the cerulein hyperstimulation model of AP. Severity of pancreatitis was determined in cerulein-injected mice by histological analysis and neutrophil sequestration. The pretreatment of mice with TMMC reduced the severity of AP and pancreatitis-associated lung injury and inhibited several biochemical parameters (activity of amylase, lipase, trypsin, trypsinogen, and myeloperoxidase and production of proinflammatory cytokines). In addition, TMMC inhibited pancreatic acinar cell death and production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 by inhibiting NF-κB and extracellular signal-regulated protein kinase 1/2 (ERK1/2) activation. Neutralizing antibodies for TNF-α, IL-1β, and IL-6 inhibited cerulein-induced cell death in isolated pancreatic acinar cells. Moreover, pharmacological blockade of NF-κB/ERK1/2 reduced acinar cell death and production of TNF-α, IL-1β, and IL-6 in isolated pancreatic acinar cells. In addition, posttreatment of mice with TMMC showed reduced severity of AP and lung injury. Our results suggest that TMMC may reduce the complications associated with pancreatitis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ali A. Aghdassi ◽  
Daniel S. John ◽  
Matthias Sendler ◽  
Christian Storck ◽  
Cindy van den Brandt ◽  
...  

AbstractAcute pancreatitis is characterized by an early intracellular protease activation and invasion of leukocytes into the pancreas. Cathepsins constitute a large group of lysosomal enzymes, that have been shown to modulate trypsinogen activation and neutrophil infiltration. Cathepsin G (CTSG) is a neutrophil serine protease of the chymotrypsin C family known to degrade extracellular matrix components and to have regulatory functions in inflammatory disorders. The aim of this study was to investigate the role of CTSG in pancreatitis. Isolated acinar cells were exposed to recombinant CTSG and supramaximal cholezystokinin stimulation. In CTSG−/− mice and corresponding controls acute experimental pancreatitis was induced by serial caerulein injections. Severity was assessed by histology, serum enzyme levels and zymogen activation. Neutrophil infiltration was quantified by chloro-acetate ersterase staining and myeloperoxidase measurement. CTSG was expessed in inflammatory cells but not in pancreatic acinar cells. CTSG had no effect on intra-acinar-cell trypsinogen activation. In CTSG−/− mice a transient decrease of neutrophil infiltration into the pancreas and lungs was found during acute pancreatitis while the disease severity remained largely unchanged. CTSG is involved in pancreatic neutrophil infiltration during pancreatitis, albeit to a lesser degree than the related neutrophil (PMN) elastase. Its absence therefore leaves pancreatitis severity essentially unaffected.


Pancreatology ◽  
2019 ◽  
Vol 19 ◽  
pp. S101
Author(s):  
Rong Chen ◽  
Ermanno Malagola ◽  
Maren Dietrich ◽  
Richard Zuellig ◽  
Marta Bombardo ◽  
...  

2015 ◽  
Vol 149 (2) ◽  
pp. 481-492.e7 ◽  
Author(s):  
Li Wen ◽  
Svetlana Voronina ◽  
Muhammad A. Javed ◽  
Muhammad Awais ◽  
Peter Szatmary ◽  
...  

2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Juan Xiao ◽  
Houmin Lin ◽  
Binggang Liu ◽  
Junfei Jin

Abstract Premature trypsinogen activation is the early event of acute pancreatitis. Therefore, the studies on the processes of trypsinogen activation induced by compounds are important to understand mechanism underly acute pancreatitis under various conditions. Calcium overload in the early stage of acute pancreatitis was previously found to cause intracellular trypsinogen activation; however, treatment of acute pancreatitis using calcium channel blockers did not produced consistent results. Proteasome activity that could be inhibited by some calcium channel blocker has recently been reported to affect the development of acute pancreatitis; however, the associated mechanism were not fully understood. Here, the roles of nicardipine were investigated in trypsinogen activation in pancreatic acinar cells. The results showed that nicardipine could increase cathepsin B activity that caused trypsinogen activation, but higher concentration of nicardipine or prolonged treatment had an opposite effect. The effects of short time treatment of nicardipine at low concentration were studied here. Proteasome inhibition was observed under nicardipine treatment that contributed to the up-regulation in cytosolic calcium. Increased cytosolic calcium from ER induced by nicardipine resulted in the release and activation of cathepsin B. Meanwhile, calcium chelator inhibited cathepsin B as well as trypsinogen activation. Consistently, proteasome activator protected acinar cells from injury induced by nicardipine. Moreover, proteasome inhibition caused by nicardipine depended on CaMKII. In conclusion, CaMKII down-regulation/proteasome inhibition/cytosolic calcium up-regulation/cathepsin B activation/trypsinogen activation axis was present in pancreatic acinar cells injury under nicardipine treatment.


2005 ◽  
Vol 360 (1464) ◽  
pp. 2273-2284 ◽  
Author(s):  
M Chvanov ◽  
O.H Petersen ◽  
A Tepikin

Reactive oxygen and nitrogen species (ROS and RNS) play an important role in signal transduction and cell injury processes. Nitric oxide synthase (NOS)—the key enzyme producing nitric oxide (NO)—is found in neuronal structures, vascular endothelium and, possibly, in acinar and ductal epithelial cells in the pancreas. NO is known to regulate cell homeostasis, and its effects on the acinar cells are reviewed here. ROS are implicated in the early events within the acinar cells, leading to the development of acute pancreatitis. The available data on ROS/RNS involvement in the apoptotic and necrotic death of pancreatic acinar cells will be discussed.


Sign in / Sign up

Export Citation Format

Share Document