vascular endothelium
Recently Published Documents


TOTAL DOCUMENTS

2238
(FIVE YEARS 265)

H-INDEX

119
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Jane A Mitchell ◽  
Maria Vinokurova ◽  
Maria E Lopes-Pires ◽  
Fisnik Shala ◽  
Paul C Armstrong ◽  
...  

Prostacyclin is an anti-thrombotic hormone long considered to be derived from the vascular endothelium. However, the role of non-vascular sources for prostacyclin synthesis has not been systematically evaluated due to a lack of tools. Here we used cell-specific knockout mice and human tissues to show that lung, and other tissues, are powerful producers of prostacyclin independent of their vascular components. Instead, in mice and humans, lung prostacyclin synthesis is associated with fibroblasts. The fibroblast-derived prostaglandins enter the circulation and provide systemic anti-thrombotic protection. These observations define a new paradigm in prostacyclin biology in which fibroblast/non-vascular-derived prostacyclin works in parallel with prostaglandins produced by the endothelium to control cardiovascular health. These results may explain how local diseases of the lung and elsewhere result in cardiovascular risk.


Cell Reports ◽  
2022 ◽  
Vol 38 (1) ◽  
pp. 110196
Author(s):  
Xianming Zhang ◽  
Hua Jin ◽  
Xiaojia Huang ◽  
Birendra Chaurasiya ◽  
Daoyin Dong ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 88
Author(s):  
Maria Elisa Lopes-Pires ◽  
Jéssica Oliveira Frade-Guanaes ◽  
Gregory J. Quinlan

Sepsis is regarded as one of the main causes of death among the critically ill. Pathogen infection results in a host-mediated pro-inflammatory response to fight infection; as part of this response, significant endogenous reactive oxygen (ROS) and nitrogen species (RNS) production occurs, instigated by a variety of sources, including activated inflammatory cells, such as neutrophils, platelets, and cells from the vascular endothelium. Inflammation can become an inappropriate self-sustaining and expansive process, resulting in sepsis. Patients with sepsis often exhibit loss of aspects of normal vascular homeostatic control, resulting in abnormal coagulation events and the development of disseminated intravascular coagulation. Diagnosis and treatment of sepsis remain a significant challenge for healthcare providers globally. Targeting the drivers of excessive oxidative/nitrosative stress using antioxidant treatments might be a therapeutic option. This review focuses on the association between excessive oxidative/nitrosative stress, a common feature in sepsis, and loss of homeostatic control at the level of the vasculature. The literature relating to potential antioxidants is also described.


2021 ◽  
Vol 12 ◽  
Author(s):  
Steven R. Botts ◽  
Jason E. Fish ◽  
Kathryn L. Howe

Atherosclerosis, the chronic accumulation of cholesterol-rich plaque within arteries, is associated with a broad spectrum of cardiovascular diseases including myocardial infarction, aortic aneurysm, peripheral vascular disease, and stroke. Atherosclerotic cardiovascular disease remains a leading cause of mortality in high-income countries and recent years have witnessed a notable increase in prevalence within low- and middle-income regions of the world. Considering this prominent and evolving global burden, there is a need to identify the cellular mechanisms that underlie the pathogenesis of atherosclerosis to discover novel therapeutic targets for preventing or mitigating its clinical sequelae. Despite decades of research, we still do not fully understand the complex cell-cell interactions that drive atherosclerosis, but new investigative approaches are rapidly shedding light on these essential mechanisms. The vascular endothelium resides at the interface of systemic circulation and the underlying vessel wall and plays an essential role in governing pathophysiological processes during atherogenesis. In this review, we present emerging evidence that implicates the activated endothelium as a driver of atherosclerosis by directing site-specificity of plaque formation and by promoting plaque development through intracellular processes, which regulate endothelial cell proliferation and turnover, metabolism, permeability, and plasticity. Moreover, we highlight novel mechanisms of intercellular communication by which endothelial cells modulate the activity of key vascular cell populations involved in atherogenesis, and discuss how endothelial cells contribute to resolution biology – a process that is dysregulated in advanced plaques. Finally, we describe important future directions for preclinical atherosclerosis research, including epigenetic and targeted therapies, to limit the progression of atherosclerosis in at-risk or affected patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Beata Tokarz-Deptuła ◽  
Joanna Palma ◽  
Łukasz Baraniecki ◽  
Michał Stosik ◽  
Roman Kołacz ◽  
...  

The article presents the function of platelets in inflammation as well as in bacterial and viral infections, which are the result of their reaction with the endovascular environment, including cells of damaged vascular endothelium and cells of the immune system. This role of platelets is conditioned by biologically active substances present in their granules and in their specific structures – EV (extracellular vesicles).


2021 ◽  
Author(s):  
Monika Zdanyte ◽  
Dominik Rath ◽  
Meinrad Gawaz ◽  
Tobias Geisler

AbstractSARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is associated with high risk of venous and arterial thrombosis. Thrombotic complications, especially pulmonary embolism, lead to increased all-cause mortality in both intensive care unit and noncritically ill patients. Damage and activation of vascular endothelium, platelet activation, followed by thrombotic and fibrinolytic imbalance as well as hypercoagulability are the key pathomechanisms in immunothrombosis leading to a significant increase in thromboembolism in coronavirus disease 2019 (COVID-19) compared with other acute illnesses. In this review article, we discuss the incidence and prognosis, diagnosis, prevention, and treatment of venous thromboembolism in patients with COVID-19 disease, based on clinical experience and research available to date.


2021 ◽  
Vol 118 (50) ◽  
pp. e2114842118
Author(s):  
Zhengjie Zhou ◽  
Chih-Fan Yeh ◽  
Michael Mellas ◽  
Myung-Jin Oh ◽  
Jiayu Zhu ◽  
...  

Vascular disease is a leading cause of morbidity and mortality in the United States and globally. Pathological vascular remodeling, such as atherosclerosis and stenosis, largely develop at arterial sites of curvature, branching, and bifurcation, where disturbed blood flow activates vascular endothelium. Current pharmacological treatments of vascular complications principally target systemic risk factors. Improvements are needed. We previously devised a targeted polyelectrolyte complex micelle to deliver therapeutic nucleotides to inflamed endothelium in vitro by displaying the peptide VHPKQHR targeting vascular cell adhesion molecule 1 (VCAM-1) on the periphery of the micelle. This paper explores whether this targeted nanomedicine strategy effectively treats vascular complications in vivo. Disturbed flow-induced microRNA-92a (miR-92a) has been linked to endothelial dysfunction. We have engineered a transgenic line (miR-92aEC-TG/Apoe−/−) establishing that selective miR-92a overexpression in adult vascular endothelium causally promotes atherosclerosis in Apoe−/− mice. We tested the therapeutic effectiveness of the VCAM-1–targeting polyelectrolyte complex micelles to deliver miR-92a inhibitors and treat pathological vascular remodeling in vivo. VCAM-1–targeting micelles preferentially delivered miRNA inhibitors to inflamed endothelial cells in vitro and in vivo. The therapeutic effectiveness of anti–miR-92a therapy in treating atherosclerosis and stenosis in Apoe−/− mice is markedly enhanced by the VCAM-1–targeting polyelectrolyte complex micelles. These results demonstrate a proof of concept to devise polyelectrolyte complex micelle-based targeted nanomedicine approaches treating vascular complications in vivo.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3287
Author(s):  
Francesca Fagiani ◽  
Marieva Vlachou ◽  
Daniele Di Marino ◽  
Ilaria Canobbio ◽  
Alice Romagnoli ◽  
...  

By controlling the change of the backbones of several cellular substrates, the peptidyl-prolyl cis-trans isomerase Pin1 acts as key fine-tuner and amplifier of multiple signaling pathways, thereby inducing several biological consequences, both in physiological and pathological conditions. Data from the literature indicate a prominent role of Pin1 in the regulating of vascular homeostasis. In this review, we will critically dissect Pin1’s role as conformational switch regulating the homeostasis of vascular endothelium, by specifically modulating nitric oxide (NO) bioavailability. In this regard, Pin1 has been reported to directly control NO production by interacting with bovine endothelial nitric oxide synthase (eNOS) at Ser116-Pro117 (human equivalent is Ser114-Pro115) in a phosphorylation-dependent manner, regulating its catalytic activity, as well as by regulating other intracellular players, such as VEGF and TGF-β, thereby impinging upon NO release. Furthermore, since Pin1 has been found to act as a critical driver of vascular cell proliferation, apoptosis, and inflammation, with implication in many vascular diseases (e.g., diabetes, atherosclerosis, hypertension, and cardiac hypertrophy), evidence indicating that Pin1 may serve a pivotal role in vascular endothelium will be discussed. Understanding the role of Pin1 in vascular homeostasis is crucial in terms of finding a new possible therapeutic player and target in vascular pathologies, including those affecting the elderly (such as small and large vessel diseases and vascular dementia) or those promoting the full expression of neurodegenerative dementing diseases.


2021 ◽  
Author(s):  
Taka-aki Sakaue ◽  
Yuya Fujishima ◽  
Yoko Fukushima ◽  
Yuri Tsugawa-Shimizu ◽  
Shiro Fukuda ◽  
...  

Abstract Adiponectin (APN), a protein abundantly secreted from adipocytes, has been reported to possess beneficial effects on cardiovascular diseases in association with its accumulation on target organs and cells by binding to T-cadherin. However, little is known about the role of APN in the development of diabetic microvascular complications, such as diabetic retinopathy (DR). Here we investigated the impact of APN on the progression of early retinal vascular damage using a streptozotocin (STZ)-induced diabetic mouse model. Our immunofluorescence results clearly showed T-cadherin-dependent localization of APN in the vascular endothelium of retinal arterioles, which was progressively decreased during the course of diabetes. Such reduction of retinal APN accompanied the early features of DR, represented by increased vascular permeability, and was prevented by glucose-lowering therapy with dapagliflozin, a selective sodium-glucose co-transporter 2 inhibitor. In addition, APN deficiency resulted in severe vascular permeability under relatively short-term hyperglycemia, together with a significant increase in vascular cellular adhesion molecule-1 (VCAM-1) and a reduction in claudin-5 in the retinal endothelium. The present study demonstrated a possible protective role of APN against the development of DR.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takamasa Kinoshita ◽  
Hiroyuki Tomita ◽  
Hideshi Okada ◽  
Ayumi Niwa ◽  
Fuminori Hyodo ◽  
...  

Abstract Purpose Heparan sulfate (HS) is one of the factors that has been suggested to be associated with angiogenesis and invasion of glioblastoma (GBM), an aggressive and fast-growing brain tumor. However, it remains unclear how HS of endothelial cells is involved in angiogenesis in glioblastoma and its prognosis. Thus, we investigated the effect of endothelial cell HS on GBM development. Methods We generated endothelial cell-specific knockout of Ext1, a gene encoding a glycosyltransferase and essential for HS synthesis, and murine GL261 glioblastoma cells were orthotopically transplanted. Two weeks after transplantation, we examined the tumor progression and underlying mechanisms. Results The endothelial cell-specific Ext1 knockout (Ext1CKO) mice exhibited reduced HS expression specifically in the vascular endothelium of the brain capillaries compared with the control wild-type (WT) mice. GBM growth was significantly suppressed in Ext1CKO mice compared with that in WT mice. After GBM transplantation, the survival rate was significantly higher in Ext1CKO mice than in WT mice. We investigated how the effect of fibroblast growth factor 2 (FGF2), which is known as an angiogenesis-promoting factor, differs between Ext1CKO and WT mice by using an in vivo Matrigel assay and demonstrated that endothelial cell-specific HS reduction attenuated the effect of FGF2 on angiogenesis. Conclusions HS reduction in the vascular endothelium of the brain suppressed GBM growth and neovascularization in mice.


Sign in / Sign up

Export Citation Format

Share Document