DEVELOPMENT OF THYMOMAS IN TRANSGENIC RATS CARRYING HTLV-I PX GENE UNDER CONTROL OF A LYMPHOID TISSUE SPECIFIC PROMOTER

Author(s):  
Kazunori Kikuchi ◽  
Hitoshi Ikeda ◽  
Kazunori Fugo ◽  
Takahiro Tsuchikawa ◽  
Toshiaki Sugaya ◽  
...  
2007 ◽  
Vol 44 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Maria Oszvald ◽  
Mark Gardonyi ◽  
Cecília Tamas ◽  
Imre Takacs ◽  
Barnabas Jenes ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sayaka Nagamoto ◽  
Miyuki Agawa ◽  
Emi Tsuchitani ◽  
Kazunori Akimoto ◽  
Saki Kondo Matsushima ◽  
...  

AbstractGenome editing techniques such as CRISPR/Cas9 have both become common gene engineering technologies and have been applied to gene therapy. However, the problems of increasing the efficiency of genome editing and reducing off-target effects that induce double-stranded breaks at unexpected sites in the genome remain. In this study, we developed a novel Cas9 transduction system, Exci-Cas9, using an adenovirus vector (AdV). Cas9 was expressed on a circular molecule excised by the site-specific recombinase Cre and succeeded in shortening the expression period compared to AdV, which expresses the gene of interest for at least 6 months. As an example, we chose hepatitis B, which currently has more than 200 million carriers in the world and frequently progresses to liver cirrhosis or hepatocellular carcinoma. The efficiencies of hepatitis B virus genome disruption by Exci-Cas9 and Cas9 expression by AdV directly (Avec) were the same, about 80–90%. Furthermore, Exci-Cas9 enabled cell- or tissue-specific genome editing by expressing Cre from a cell- or tissue-specific promoter. We believe that Exci-Cas9 developed in this study is useful not only for resolving the persistent expression of Cas9, which has been a problem in genome editing, but also for eliminating long-term DNA viruses such as human papilloma virus.


2013 ◽  
Vol 21 (3) ◽  
pp. 514-523 ◽  
Author(s):  
H. Nagase ◽  
Y. Nagasawa ◽  
Y. Tachida ◽  
S. Sakakibara ◽  
J. Okutsu ◽  
...  

Blood ◽  
2004 ◽  
Vol 103 (11) ◽  
pp. 4164-4172 ◽  
Author(s):  
Delphine-Armelle Lacorre ◽  
Espen S. Baekkevold ◽  
Ignacio Garrido ◽  
Per Brandtzaeg ◽  
Guttorm Haraldsen ◽  
...  

Abstract Endothelial cells display remarkable heterogeneity in different organs and vascular beds. Although many studies suggest that tissues “speak” to endothelial cells, endothelial cell diversity remains poorly characterized at the molecular level. Here, we describe a novel strategy to characterize tissue-specific endothelial cell phenotypes and to identify endothelial cell genes that are under the control of the local microenvironment. By comparing post-capillary high endothelial venule endothelial cells (HEVECs), freshly isolated from human tonsils without any cell culture step, with HEVECs cultured for 2 days, we found that HEVECs rapidly lost their specialized characteristics when isolated from the lymphoid tissue microenvironment. Striking changes occurred as early as after 48 hours, with complete loss of the postcapillary venule–specific Duffy antigen receptor for chemokines (DARCs) and the HEV-specific fucosyltransferase Fuc-TVII. DNA microarray analysis identified several other candidate HEV genes that were rapidly down-regulated ex vivo, including type XV collagen, which we characterized as a novel, abundant HEV transcript in situ. Together, our results demonstrate that blood vessel type–specific and tissue-specific characteristics of endothelial cells are under the control of their microenvironment. Therefore, even short-term primary cultures of human endothelial cells may not adequately mimic the differentiated endothelial cell phenotypes existing in vivo.


Sign in / Sign up

Export Citation Format

Share Document