tissue microenvironment
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 144)

H-INDEX

34
(FIVE YEARS 8)

2022 ◽  
Vol 23 (1) ◽  
pp. 539
Author(s):  
Beatrice Piola ◽  
Maurizio Sabbatini ◽  
Sarah Gino ◽  
Marco Invernizzi ◽  
Filippo Renò

In recent years, bioprinting has attracted much attention as a potential tool for generating complex 3D biological constructs capable of mimicking the native tissue microenvironment and promoting physiologically relevant cell–cell and cell–matrix interactions. The aim of the present study was to develop a crosslinked 3D printable hydrogel based on biocompatible natural polymers, gelatin and xanthan gum at different percentages to be used both as a scaffold for cell growth and as a wound dressing. The CellInk Inkredible 3D printer was used for the 3D printing of hydrogels, and a glutaraldehyde solution was tested for the crosslinking process. We were able to obtain two kinds of printable hydrogels with different porosity, swelling and degradation time. Subsequently, the printed hydrogels were characterized from the point of view of biocompatibility. Our results showed that gelatin/xanthan-gum bioprinted hydrogels were biocompatible materials, as they allowed both human keratinocyte and fibroblast in vitro growth for 14 days. These two bioprintable hydrogels could be also used as a helpful dressing material.


Author(s):  
Muhammad Shafiq ◽  
Yujie Chen ◽  
Rashida Hashim ◽  
Chuanglong He ◽  
Xiumei Mo ◽  
...  

Reactive oxygen species (ROS), acting as essential mediators in biological system, play important roles in the physiologic and pathologic processes, including cellular signal transductions and cell homeostasis interference. Aberrant expression of ROS in tissue microenvironment can be caused by the internal/external stimuli and tissue injury, which may leads to an elevated level of oxidative stress, inflammatory response, and cellular damage as well as disruption in the tissue repair process. To prevent the formation of excess ROS around the injury site, advanced biomaterials can be remodeled or instructed to release their payloads in an injury microenvironment-responsive fashion to regulate the elevated levels of the ROS, which may also help downregulate the oxidative stress and promote tissue regeneration. A multitude of scaffolds and bioactive cues have been reported to promote the regeneration of damaged tissues based on the scavenging of free radicals and reactive species that confer high protection to the cellular activity and tissue function. In this review, we outline the underlying mechanism of ROS generation in the tissue microenvironment and present a comprehensive review of ROS-scavenging biomaterials for regenerative medicine and tissue engineering applications, including soft tissues regeneration, bone and cartilage repair as well as wound healing. Additionally, we highlight the strategies for the regulation of ROS by scaffold design and processing technology. Taken together, developing ROS-based biomaterials may not only help develop advanced platforms for improving injury microenvironment but also accelerate tissue regeneration.


2021 ◽  
Vol 23 (1) ◽  
pp. 144
Author(s):  
Suguru Kadomoto ◽  
Kouji Izumi ◽  
Atsushi Mizokami

Macrophages are present in most human tissues and have very diverse functions. Activated macrophages are usually divided into two phenotypes, M1 macrophages and M2 macrophages, which are altered by various factors such as microorganisms, tissue microenvironment, and cytokine signals. Macrophage polarity is very important for infections, inflammatory diseases, and malignancies; its management can be key in the prevention and treatment of diseases. In this review, we assess the current state of knowledge on macrophage polarity and report on its prospects as a therapeutic target.


2021 ◽  
Author(s):  
Bokai Zhu ◽  
Shuxiao Chen ◽  
Yunhao Bai ◽  
Han Chen ◽  
Nilanjan Mukherjee ◽  
...  

The ability to align individual cellular information from multiple experimental sources, techniques and systems is fundamental for a true systems-level understanding of biological processes. While single-cell transcriptomic studies have transformed our appreciation for the complexities and contributions of diverse cell types to disease, they can be limited in their ability to assess protein-level phenotypic information and beyond. Therefore, matching and integrating single-cell datasets which utilize robust protein measurements across multiple modalities is critical for a deeper understanding of cell states, and signaling pathways particularly within their native tissue context. Current available tools are mainly designed for single-cell transcriptomics matching and integration, and generally rely upon a large number of shared features across datasets for mutual Nearest Neighbor (mNN) matching. This approach is unsuitable when applied to single-cell proteomic datasets, due to the limited number of parameters simultaneously accessed, and lack of shared markers across these experiments. Here, we introduce a novel cell matching algorithm, Matching with pARtIal Overlap (MARIO), that takes into account both shared and distinct features, while consisting of vital filtering steps to avoid sub-optimal matching. MARIO accurately matches and integrates data from different single-cell proteomic and multi-modal methods, including spatial techniques, and has cross-species capabilities. MARIO robustly matched tissue macrophages identified from COVID-19 lung autopsies via CODEX imaging to macrophages recovered from COVID-19 bronchoalveolar lavage fluid via CITE-seq. This cross-platform integrative analysis enabled the identification of unique orchestrated immune responses within the lung of complement-expressing macrophages and their impact on the local tissue microenvironment. MARIO thus provides an analytical framework for unified analysis of single-cell data for a comprehensive understanding of the underlying biological system.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6045
Author(s):  
Teresa Catalano ◽  
Emira D’Amico ◽  
Carmelo Moscatello ◽  
Maria Carmela Di Marcantonio ◽  
Alessio Ferrone ◽  
...  

Colorectal cancer (CRC) is a multistep process that arises in the colic tissue microenvironment. Oxidative stress plays a role in mediating CRC cell survival and progression, as well as promoting resistance to therapies. CRC progression is associated with Wnt/β-Catenin signaling dysregulation and loss of proper APC functions. Cancer recurrence/relapse has been attributed to altered ROS levels, produced in a cancerous microenvironment. The effect of oxidative distress on Wnt/β-Catenin signaling in the light of APC functions is unclear. This study evaluated the effect of H2O2-induced short-term oxidative stress in HCT116, SW480 and SW620 cells with different phenotypes of APC and β-Catenin. The modulation and relationship of APC with characteristic molecules of Wnt/β-Catenin were assessed in gene and protein expression. Results indicated that CRC cells, even when deprived of growth factors, under acute oxidative distress conditions by H2O2 promote β-Catenin expression and modulate cytoplasmic APC protein. Furthermore, H2O2 induces differential gene expression depending on the cellular phenotype and leading to favor both Wnt/Catenin-dependent and -independent signaling. The exact mechanism by which oxidative distress can affect Wnt signaling functions will require further investigation to reveal new scenarios for the development of therapeutic approaches for CRC, in the light of the conserved functions of APC.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5857
Author(s):  
Chandler R. Keller ◽  
Yang Hu ◽  
Kelsey F. Ruud ◽  
Anika E. VanDeen ◽  
Steve R. Martinez ◽  
...  

Tissue extracellular matrix (ECM) is a structurally and compositionally unique microenvironment within which native cells can perform their natural biological activities. Cells grown on artificial substrata differ biologically and phenotypically from those grown within their native tissue microenvironment. Studies examining human tissue ECM structures and the biology of human tissue cells in their corresponding tissue ECM are lacking. Such investigations will improve our understanding about human pathophysiological conditions for better clinical care. We report here human normal breast tissue and invasive ductal carcinoma tissue ECM structural features. For the first time, a hydrogel was successfully fabricated using whole protein extracts of human normal breast ECM. Using immunofluorescence staining of type I collagen (Col I) and machine learning of its fibrous patterns in the polymerized human breast ECM hydrogel, we have defined the microstructural characteristics of the hydrogel and compared the microstructures with those of other native ECM hydrogels. Importantly, the ECM hydrogel supported 3D growth and cell-ECM interaction of both normal and cancerous mammary epithelial cells. This work represents further advancement toward full reconstitution of the human breast tissue microenvironment, an accomplishment that will accelerate the use of human pathophysiological tissue-derived matrices for individualized biomedical research and therapeutic development.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Vera Chesnokova ◽  
Shlomo Melmed

Abstract Replicative senescence occurs due to an inability to repair DNA damage and activation of p53/p21 and p16INK4 pathways. It is considered a preventive mechanism for arresting proliferation of DNA-damaged cells. Stably senescent cells are characterized by a senescence-associated secretory phenotype (SASP), which produces and secretes cytokines, chemokines, and/or matrix metalloproteinases depending on the cell type. SASP proteins may increase cell proliferation, facilitating conversion of premalignant to malignant tumor cells, triggering DNA damage, and altering the tissue microenvironment. Further, senescent cells accumulate with age, thereby aggravating age-related tissue damage. Here, we review a heretofore unappreciated role for growth hormone (GH) as a SASP component, acting in an autocrine and paracrine fashion. In senescent cells, GH is activated by DNA-damage-induced p53 and inhibits phosphorylation of DNA repair proteins ATM, Chk2, p53, and H2AX. Somatotroph adenomas containing abundant intracellular GH exhibit increased somatic copy number alterations, indicative of DNA damage, and are associated with induced p53/p21. As this pathway restrains proliferation of DNA-damaged cells, these mechanisms may underlie the senescent phenotype and benign nature of slowly proliferating pituitary somatotroph adenomas. In highly proliferative cells, such as colon epithelial cells, GH induced in response to DNA damage suppresses p53, thereby triggering senescent cell proliferation. As senescent cells harbor unrepaired DNA damage, GH may enable senescent cells to evade senescence and reenter the cell cycle, resulting in acquisition of harmful mutations. These mechanisms, at least in part, may underlie pro-aging effects of GH observed in animal models and in patients with chronically elevated GH levels.


Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 758
Author(s):  
Mysoon M. Al-Ansari ◽  
Reem H. AlMalki ◽  
Lina A. Dahabiyeh ◽  
Anas M. Abdel Rahman

Breast cancer, the most frequent cancer diagnosed among females, is associated with a high mortality rate worldwide. Alterations in the microbiota have been linked with breast cancer development, suggesting the possibility of discovering disease biomarkers. Metabolomics has emerged as an advanced promising analytical approach for profiling metabolic features associated with breast cancer subtypes, disease progression, and response to treatment. The microenvironment compromises non-cancerous cells such as fibroblasts and influences cancer progression with apparent phenotypes. This review discusses the role of metabolomics in studying metabolic dysregulation in breast cancer caused by the effect of the tumor microenvironment on multiple cells such as immune cells, fibroblasts, adipocytes, etc. Breast tumor cells have a unique metabolic profile through the elevation of glycolysis and the tricarboxylic acid cycle metabolism. This metabolic profile is highly sensitive to microbiota activity in the breast tissue microenvironment. Metabolomics shows great potential as a tool for monitoring metabolic dysregulation in tissue and associating the findings with microbiome expression.


Author(s):  
Camilo Mora-Navarro ◽  
Mario Eduardo Garcia ◽  
Prottasha Sarker ◽  
Emily W Ozpinar ◽  
Jeffrey Enders ◽  
...  

Abstract Extracellular matrix (ECM) is a complex structure composed of bioactive molecules representative of the specific local tissue microenvironment. Decellularized ECM biomaterials harness these biomolecules for regenerative medicine applications. One potential therapeutic application is the use of vocal fold (VF) specific ECM to restore the VFs after injury. ECM scaffolds are derived through a process of decellularization, which aims to remove unwanted immunogenic biomolecules (e.g., DNA) while preserving the composition of the ECM. The effectiveness of the decellularization is typically assessed at the end by quantifying ECM attributes such as final dsDNA content. However, batch-to-batch variability in ECM manufacturing remains a significant challenge for the process standardization, cost-effectiveness, and scale-up. The limited number of tools available for in-process control heavily restricts the uncovering of the correlations between decellularization process parameters and ECM attributes. In this study, we developed a technique applicable to both the classical batch method and semi-continuous decellularization system to trace the decellularization of two laryngeal tissues in real-time. We hypothesize that monitoring the bioreactor's effluent absorbance at 260 nm as a function of time will provide a representative DNA release profile from the tissue and thus allowing for process optimization. The DNA release profiles were obtained for laryngeal tissues and were successfully used to optimize the derivation of VF lamina propria-ECM (auVF-ECM) hydrogels. This hydrogel had comparable rheological properties to commonly used biomaterials to treat VF injuries. Also, the auVF-ECM hydrogel promoted the down-regulation of CCR7 by THP-1 macrophages upon lipopolysaccharide stimulation in vitro suggesting some anti-inflammatory properties. The results show that absorbance profiles are a good representation of DNA removal during the decellularization process thus providing an important tool to optimize future protocols.


Sign in / Sign up

Export Citation Format

Share Document