scholarly journals 1129: FALSE POSITIVES OF PULSE PRESSURE VARIATION IN SPONTANEOUSLY BREATHING PATIENTS

2021 ◽  
Vol 50 (1) ◽  
pp. 563-563
Author(s):  
yang liu ◽  
xiaoshi li ◽  
xin zhang ◽  
guoping zhou
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maxime Nguyen ◽  
Osama Abou-Arab ◽  
Stéphane Bar ◽  
Hervé Dupont ◽  
Bélaïd Bouhemad ◽  
...  

AbstractThe purpose of this study was to determine whether dynamic elastance EAdyn derived from echocardiographic measurements of stroke volume variations can predict the success of a one-step decrease of norepinephrine dose. In this prospective single-center study, 39 patients with vasoplegic syndrome treated with norepinephrine and for whom the attending physician had decided to decrease norepinephrine dose and monitored by thermodilution were analyzed. EAdyn is the ratio of pulse pressure variation to stroke volume variation and was calculated from echocardiography stroke volume variations and from transpulmonary thermodilution. Pulse pressure variation was obtained from invasive arterial monitoring. Responders were defined by a decrease in mean arterial pressure (MAP) > 10% following norepinephrine decrease. The median decrease in norepinephrine was of 0.04 [0.03–0.05] µg kg−1 min−1. Twelve patients (31%) were classified as pressure responders with a median decrease in MAP of 13% [12–15%]. EAdyn was lower in pressure responders (0.40 [0.24–0.57] vs 0.95 [0.77–1.09], p < 0.01). EAdyn was able to discriminate between pressure responders and non-responders with an area under the curve of 0.86 (CI95% [0.71 to1.0], p < 0.05). The optimal cut-off was 0.8. EAdyn calculated from the echocardiographic estimation of the stroke volume variation and the invasive arterial pulse pressure variation can be used to discriminate pressure response to norepinephrine weaning. Agreement between EAdyn calculated from echocardiography and thermodilution was poor. Echocardiographic EAdyn might be used at bedside to optimize hemodynamic treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christoph R. Behem ◽  
Michael F. Graessler ◽  
Till Friedheim ◽  
Rahel Kluttig ◽  
Hans O. Pinnschmidt ◽  
...  

AbstractDynamic parameters of preload have been widely recommended to guide fluid therapy based on the principle of fluid responsiveness and with regard to cardiac output. An equally important aspect is however to also avoid volume-overload. This accounts particularly when capillary leakage is present and volume-overload will promote impairment of microcirculatory blood flow. The aim of this study was to evaluate, whether an impairment of intestinal microcirculation caused by volume-load potentially can be predicted using pulse pressure variation in an experimental model of ischemia/reperfusion injury. The study was designed as a prospective explorative large animal pilot study. The study was performed in 8 anesthetized domestic pigs (German landrace). Ischemia/reperfusion was induced during aortic surgery. 6 h after ischemia/reperfusion-injury measurements were performed during 4 consecutive volume-loading-steps, each consisting of 6 ml kg−1 bodyweight−1. Mean microcirculatory blood flow (mean Flux) of the ileum was measured using direct laser-speckle-contrast-imaging. Receiver operating characteristic analysis was performed to determine the ability of pulse pressure variation to predict a decrease in microcirculation. A reduction of ≥ 10% mean Flux was considered a relevant decrease. After ischemia–reperfusion, volume-loading-steps led to a significant increase of cardiac output as well as mean arterial pressure, while pulse pressure variation and mean Flux were significantly reduced (Pairwise comparison ischemia/reperfusion-injury vs. volume loading step no. 4): cardiac output (l min−1) 1.68 (1.02–2.35) versus 2.84 (2.15–3.53), p = 0.002, mean arterial pressure (mmHg) 29.89 (21.65–38.12) versus 52.34 (43.55–61.14), p < 0.001, pulse pressure variation (%) 24.84 (17.45–32.22) versus 9.59 (1.68–17.49), p = 0.004, mean Flux (p.u.) 414.95 (295.18–534.72) versus 327.21 (206.95–447.48), p = 0.006. Receiver operating characteristic analysis revealed an area under the curve of 0.88 (CI 95% 0.73–1.00; p value < 0.001) for pulse pressure variation for predicting a decrease of microcirculatory blood flow. The results of our study show that pulse pressure variation does have the potential to predict decreases of intestinal microcirculatory blood flow due to volume-load after ischemia/reperfusion-injury. This should encourage further translational research and might help to prevent microcirculatory impairment due to excessive fluid resuscitation and to guide fluid therapy in the future.


2008 ◽  
Vol 106 (4) ◽  
pp. 1201-1206 ◽  
Author(s):  
Jose Otavio Auler ◽  
Filomena Galas ◽  
Ludhmila Hajjar ◽  
Luciana Santos ◽  
Thiago Carvalho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document