Changes in Brain-derived Neurotrophic Factor from Active and Sham Transcranial Direct Current Stimulation in Older Adults with Knee Osteoarthritis

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Robert Suchting ◽  
Antonio L. Teixeira ◽  
Brian Ahn ◽  
Gabriela D. Colpo ◽  
Juyoung Park ◽  
...  
2021 ◽  
Vol 3 ◽  
Author(s):  
Francesco Donati ◽  
Veronica Sian ◽  
Giorgia Morgan Biasini ◽  
Xavier de la Torre ◽  
Fabrizia Folchitto ◽  
...  

Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation that may enhance mental and physical performance in sports, representing a potential new form of doping (“brain doping” or “electromagnetic doping”). This study aims to identify diagnostic biomarkers for detecting the possible abuse of tDCS in sport. Brain-Derived Neurotrophic Factor (BDNF) and other neurotrophins (NT, such as beta nerve growth factor, NGF) were pre-selected as potential candidates since their serum values have been observed to change following tDCS. Neurotrophins were measured using ELISA assays in 92 serum samples collected from elite athletes, classified by sex (males = 74; females = 18), age (range 17–25 n = 27, 26–35 n = 36, and over 35 n = 14; age not known n = 15), type of sports practiced (endurance n = 74; power n = 18), and type of sample collection (“in competition” n = 24; “out of competition” n = 68). Single nucleotide polymorphisms (rs6265, rs11030099, and rs11030100) were genotyped on 88 samples to determine their influence on the analytes' basal levels. Athletes older than 35 presented higher BDNF values than younger individuals (p < 0.05). Samples collected “in competition” showed higher BDNF concentrations than those collected “out of competition” (p < 0.05). The studied polymorphisms appeared to affect only on proBDNF, not altering BDNF serum concentrations. NT-3 and NT-4 were poorly detectable in serum. Our results suggest that BDNF can be considered as a first biomarker to detect the abuse of tDCS in sport doping. Further studies are necessary to assess whether proBDNF and beta NGF can also be considered suitable biomarkers to detect the recourse to electromagnetic brain stimulation in sports, especially in the case their serum levels can be monitored longitudinally. To the best of our knowledge, this is the first study aimed to pre-select serum biomarkers to identify the use of tDCS, and represents the first step toward the development of an indirect strategy, preferably based on the longitudinal monitoring of individual data, for the future detection of “brain doping” in sports.


2019 ◽  
Vol 22 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Robert Suchting ◽  
Gabriela D. Colpo ◽  
Natalia P. Rocha ◽  
Hyochol Ahn

Transcranial direct current stimulation (tDCS) has demonstrated effectiveness in reducing clinical and experimental measures of pain in patients with chronic pain; however, research examining the mechanisms of action for the effects of tDCS has been lacking. The present study investigated the effect of active tDCS on measures of inflammation and stress. Older adults (aged 50–70 years) with knee osteoarthritis (OA) were randomly assigned to receive daily 20-min sessions of either tDCS ( n = 20) or sham tDCS ( n = 20) for 5 consecutive days. Participants provided blood samples at baseline and the end of treatment. The following measures of immune function and stress were collected: interleukin (IL)-6 and 10, tumor necrosis factor-α (TNF-α), C-reactive protein, cortisol, and β-endorphin. Generalized linear modeling evaluated each posttreatment measure as a function of tDCS group, controlling for baseline (measuring residual change, analogous to analysis of covariance). Bayesian statistical inference was used to directly quantify the probability of the effect of active tDCS. IL-6, IL-10, TNF-α, and β-endorphin demonstrated lower levels of stress and inflammation in the active tDCS group. These findings provide preliminary evidence that active (relative to sham) tDCS is associated with reduced levels of inflammation.


Sign in / Sign up

Export Citation Format

Share Document