scholarly journals Resuscitation with Hydroxyethyl Starch Maintains Hemodynamic Coherence in Ovine Hemorrhagic Shock

2020 ◽  
Vol 132 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Philip-Helge Arnemann ◽  
Michael Hessler ◽  
Tim Kampmeier ◽  
Laura Seidel ◽  
Youssef Malek ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Fluid resuscitation in hemorrhagic shock aims to restore hemodynamics and repair altered microcirculation. Hemodynamic coherence is the concordant performance of macro- and microcirculation. The present study on fluid therapy in hemorrhagic shock hypothesized that the choice of fluid (0.9% sodium chloride [saline group] or balanced 6% hydroxyethyl starch 130/0.4 [hydroxyethyl starch group]) impacts on hemodynamic coherence. Methods After instrumentation, 10 sheep were bled up to 30 ml/kg body weight of blood stopping at a mean arterial pressure of 30 mmHg to establish hemorrhagic shock. To reestablish baseline mean arterial pressure, they received either saline or hydroxyethyl starch (each n = 5). Hemodynamic coherence was assessed by comparison of changes in mean arterial pressure and both perfused vessel density and microvascular flow index. Results Bleeding of 23 ml/kg blood [21; 30] (median [25th; 75th percentile]) in the saline group and 24 ml/kg [22; 25] (P = 0.916) in the hydroxyethyl starch group led to hemorrhagic shock. Fluid resuscitation reestablished baseline mean arterial pressure in all sheep of the hydroxyethyl starch group and in one sheep of the saline group. In the saline group 4,980 ml [3,312; 5,700] and in the hydroxyethyl starch group 610 ml [489; 615] of fluid were needed (P = 0.009). In hemorrhagic shock perfused vessel density (saline from 100% to 83% [49; 86]; hydroxyethyl starch from 100% to 74% [61; 80]) and microvascular flow index (saline from 3.1 [2.5; 3.3] to 2.0 [1.6; 2.3]; hydroxyethyl starch from 2.9 [2.9; 3.1] to 2.5 [2.3; 2.7]) decreased in both groups. After resuscitation both variables improved in the hydroxyethyl starch group (perfused vessel density: 125% [120; 147]; microvascular flow index: 3.4 [3.2; 3.5]), whereas in the saline group perfused vessel density further decreased (64% [62; 79]) and microvascular flow index increased less than in the hydroxyethyl starch group (2.7 [2.4; 2.8]; both P < 0.001 for saline vs. hydroxyethyl starch). Conclusions Resuscitation with hydroxyethyl starch maintained coherence in hemorrhagic shock. In contrast, saline only improved macro- but not microcirculation. Hemodynamic coherence might be influenced by the choice of resuscitation fluid.

2004 ◽  
Vol 100 (6) ◽  
pp. 1484-1490 ◽  
Author(s):  
Ernst von Dobschuetz ◽  
Joerg Hutter ◽  
Tomas Hoffmann ◽  
Konrad Messmer

Background Scavenging of nitric oxide by hemoglobin-based oxygen carriers could aggravate microcirculatory failure in splanchnic organs after hemorrhagic shock as a consequence of vasoconstrictive side effects. The aim of this study was to compare the effects of two recombinant human hemoglobin solutions, a second-generation product bearing reduced nitric oxide-scavenging properties (rHb2.0) due to site directed mutagenesis of the heme pocket and a first-generation recombinant hemoglobin (rHb1.1) with scavenging capacity similar to native hemoglobin, on the pancreatic microcirculation after hemorrhagic shock. Methods Twenty-eight pentobarbital-anesthetized rats were bled to a mean arterial pressure of 40 mmHg and maintained at this level for 1 h. Using an intravital microscope, the length of erythrocyte-perfused pancreatic capillaries per observation area (functional capillary density) were measured in animals resuscitated by volumes of hydroxyethyl starch, rHb1.1, or rHb2.0 equivalent to the shed blood volume. Animals without shock induction served as control. Results As compared with control (438 +/- 10 cm(-1)), animals treated with hydroxyethyl starch (315 +/- 44 cm(-1)) and rHb1.1 (288 +/- 67 cm(-1)) showed a significant reduction of functional capillary density after 2 h of resuscitation. rHb2.0 was able to restore functional capillary density (410 +/- 42 cm(-1)) and mean arterial pressure to baseline values. Conclusion rHb2.0 was effectively able to restore pancreatic microcirculation after hemorrhagic shock. This may be related to the compound's effective lack of nitric oxide-scavenging properties. This hemoglobin solution or ones similar to it might be uniquely valuable for resuscitation from hemorrhagic shock.


2015 ◽  
Vol 122 (5) ◽  
pp. 1093-1102 ◽  
Author(s):  
Anatole Harrois ◽  
Nathalie Baudry ◽  
Olivier Huet ◽  
Hiromi Kato ◽  
Laurent Dupic ◽  
...  

Abstract Background: Norepinephrine administration is controversial during hemorrhagic shock resuscitation to stabilize mean arterial pressure (MAP) level because it could have deleterious effects on local circulations. The authors investigated the effect of norepinephrine on intestinal microcirculation during fluid resuscitation in uncontrolled hemorrhagic shock. Methods: Mice (n = 6 per group) submitted to an uncontrolled hemorrhagic shock by tail section were randomly assigned to a resuscitation with fluid but without norepinephrine to target a MAP level of 50 mmHg (FR50) or 60 mmHg (FR60) or a resuscitation with fluid and norepinephrine to target a MAP level of 50 mmHg (FRNE50) or 60 mmHg (FRNE60). Intestinal microcirculation was observed by intravital microscopy. Results: Fluid requirements were lower in groups resuscitated with fluid and norepinephrine than in groups resuscitated with fluid without norepinephrine (74.6 ± 45.1 in FR50vs. 28.1 ± 10.0 µl/g in FRNE50; P = 0.004 and 161.9 ± 90.4 in FR60vs. 44.5 ± 24.0 µl/g in FRNE60; P = 0.041). Blood loss was not statistically different between FR50 and FRNE50 (14.8 ± 8.3 vs. 8.5 ± 2.9 µl/g; P = 0.180) but was significantly lower in FRNE60 than in FR60 (10.1 ± 4.2 vs. 22.6 ± 9.6 µl/g; P = 0.015). This beneficial effect was associated with the restoration of intestinal microcirculation to the same extent in fluid resuscitated groups without norepinephrine (FR50 and FR60) and fluid resuscitated groups with norepinephrine (FRNE50 and FRNE60). Conclusions: During MAP-directed resuscitation of uncontrolled hemorrhagic shock, the administration of norepinephrine decreased blood loss and fluid requirements while preserving intestinal villi microcirculation.


1977 ◽  
Vol 233 (3) ◽  
pp. R83-R88 ◽  
Author(s):  
I. H. Chaudry ◽  
M. M. Sayeed ◽  
A. E. Baue

It has been shown that infusion of ATP-MgCl2 proved beneficial in the treatment of shock; however, it is not known whether this effect is due to improvement in the microcirculation or direct provision of energy or a combination of the above or other effects. To elucidate the mechanism of the salutary effect of ATP-MgCl2, we have now examined the in vitro uptake of ATP by liver and kidney of animals in shock. Rats were bled to a mean arterial pressure of 40 Torr and so maintained for 2 hrs. After the rats were killed, liver and kidney were removed and slices of tissue (0.3-0.5 mm thick) were incubated for 1 h in 1.0 ml of Krebs-HCO3 buffer containing 10 mM glucose, 5 mM MgCl2, and 5 mM [8-14C]ATP or 5 mM [8-14C]ADP, or 5 mM [8-14C]AMP, or 5 mM [8-14C]adenosine in 95% O2-5% CO2 and then homogenized. Tissue and medium samples were subjected to electrophoresis to separate and measure the various nucleotides. The uptake of [14C]ATP but not that of [14C]ADP or [14C]adenosine by liver and kidney slices from animals in shock was 2.5 times greater than the corresponding uptake by control slices. Thus, the beneficial effect of ATP-MgCl2 in shock could be due to provision of energy directly to tissue in which ATP levels were lowered.


2012 ◽  
Vol 112 (10) ◽  
pp. 1727-1734 ◽  
Author(s):  
Nick J. Koning ◽  
Alexander B. A. Vonk ◽  
Lerau J. van Barneveld ◽  
Albertus Beishuizen ◽  
Bektas Atasever ◽  
...  

The onset of nonpulsatile cardiopulmonary bypass is known to deteriorate microcirculatory perfusion, but it has never been investigated whether this may be prevented by restoration of pulsatility during extracorporeal circulation. We therefore investigated the distinct effects of nonpulsatile and pulsatile flow on microcirculatory perfusion during on-pump cardiac surgery. Patients undergoing coronary artery bypass graft surgery were randomized into a nonpulsatile ( n = 17) or pulsatile ( n = 16) cardiopulmonary bypass group. Sublingual mucosal microvascular perfusion was measured at distinct perioperative time intervals using sidestream dark field imaging, and quantified as the level of perfused small vessel density and microvascular flow index (vessel diameter < 20 μm). Microcirculation measurements were paralleled by hemodynamic and free hemoglobin analyses. The pulse wave during pulsatile bypass estimated 58 ± 17% of the baseline blood pressure waveform. The observed reduction in perfused vessel density during aorta cross-clamping was only restored in the pulsatile flow group and increased from 15.5 ± 2.4 to 20.3 ± 3.7 mm/mm2upon intensive care admission ( P < 0.01). The median postoperative microvascular flow index was higher in the pulsatile group [2.6 (2.5–2.9)] than in the nonpulsatile group [2.1 (1.7–2.5); P = 0.001]. Pulsatile flow was not associated with augmentation of free hemoglobin production and was paralleled by improved oxygen consumption from 70 ± 14 to 82 ± 16 ml·min−1·m−2( P = 0.01) at the end of aortic cross-clamping. In conclusion, pulsatile cardiopulmonary bypass preserves microcirculatory perfusion throughout the early postoperative period, irrespective of systemic hemodynamics. This observation is paralleled by an increase in oxygen consumption during pulsatile flow, which may hint toward decreased microcirculatory heterogeneity during extracorporeal circulation and preservation of microcirculatory perfusion throughout the perioperative period.


2007 ◽  
Vol 22 (5) ◽  
pp. 355-360 ◽  
Author(s):  
Riad Naim Younes ◽  
Fernanda Deutsch ◽  
Mario Itinoshe ◽  
Belchor Fontes ◽  
Renato Poggetti ◽  
...  

Guidelines for volume replacement for acutely hemorrhaged and hemodiluted trauma patients have not been well established. Purpose: To evaluate the effects of acute hemodilution on mean arterial pressure (MAP), and responsiveness of acutely hemodiluted and subsequently hemorrhaged rats to different volume therapies. Methods: 180 rats were hemodiluted to simulate hemorrhaged trauma patients with persistent bleeding after high volume replacement with isotonic solutions. Thirty hemodiluted [Anemia (ANE) group] animals received no further treatment. The remaining 150 animals were subjected to hypovolemic shock and randomized into five groups, according to the treatment option employed: Control (CTL) animals did not receive subsequent treatment after hemorrhagic hypovolemia, SAL4 animals received isotonic saline 4 mL/kg, SAL32 animals received isotonic saline 32 mL/kg, HS animals received hypertonic saline 4 mL/kg and BLD animals received re-infusion of drawn blood. Results: Highest mean arterial pressure (MAP) was achieved by BLD, followed by SAL32 and HS. MAP after treatment of BLD, HS, SAL32 and ANE were higher than CTL (p=0.036). At 85 and 95 minutes of experiment, SAL4, SAL32 and HS presented the lowest hematocrit levels (p<0.01). At day 3, ANE, CTL and HS had the highest hematocrit. SAL4 and CTL groups presented the highest mortality rates. Conclusion: Hypertonic saline is an effective and safe initial therapy for hemodiluted rats undergoing hemorrhagic shock, with an overall outcome comparable to blood replacement or high volume isotonic saline administration.


PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0196188 ◽  
Author(s):  
Nándor Öveges ◽  
Ildikó László ◽  
Krisztián Tánczos ◽  
Márton Németh ◽  
Gábor Lebák ◽  
...  

2018 ◽  
Vol 5 (4) ◽  
pp. 350-357 ◽  
Author(s):  
Ryosuke Mihara ◽  
Akira Takasu ◽  
Kentaro Maemura ◽  
Toshiaki Minami

1992 ◽  
Vol 20 (2) ◽  
pp. 121-126
Author(s):  
K Mikawa ◽  
N Maekawa ◽  
R Goto ◽  
H Yaku ◽  
N Saitoh ◽  
...  

The efficacy of intravenous mexiletine in attenuating the cardiovascular responses to laryngoscopy and tracheal intubation was studied in 30 normotensive patients undergoing elective surgery. The patients were randomly allocated to one of three treatment groups: saline ( n = 10); 2 mg/kg mexiletine ( n = 10); and 3 mg/kg mexiletine ( n = 10). The placebo/mexiletine was administered immediately before induction of anaesthesia using 5 mg/kg thiopentone and tracheal intubation was facilitated with 0.2 mg/kg vecuronium; laryngoscopy lasting 30 s was attempted 2 min after induction of anaesthesia. All groups showed a significant ( P < 0.05) increase in mean arterial pressure and heart rate associated with tracheal intubation. The increase in mean arterial pressure was significantly ( P < 0.05) smaller in patients receiving 3 mg/kg mexiletine compared with those receiving either saline or 2 mg/kg mexiletine. There was no significant attenuation in heart rate in either of the mexiletine treatment groups compared with the saline group. It is concluded that 3 mg/kg mexiletine given intravenously provides a simple and effective method for attenuating the pressor response to laryngoscopy and tracheal intubation.


Sign in / Sign up

Export Citation Format

Share Document