scholarly journals Comparative Effects of Halogenated Inhaled Anesthetics on Voltage-gated Na+Channel Function

2009 ◽  
Vol 110 (3) ◽  
pp. 582-590 ◽  
Author(s):  
Wei Ouyang ◽  
Karl F. Herold ◽  
Hugh C. Hemmings

Background Inhibition of voltage-gated Na channels (Na(v)) is implicated in the synaptic actions of volatile anesthetics. We studied the effects of the major halogenated inhaled anesthetics (halothane, isoflurane, sevoflurane, enflurane, and desflurane) on Na(v)1.4, a well-characterized pharmacological model for Na(v) effects. Methods Na currents (I(Na)) from rat Na(v)1.4 alpha-subunits heterologously expressed in Chinese hamster ovary cells were analyzed by whole cell voltage-clamp electrophysiological recording. Results Halogenated inhaled anesthetics reversibly inhibited Na(v)1.4 in a concentration- and voltage-dependent manner at clinical concentrations. At equianesthetic concentrations, peak I(Na) was inhibited with a rank order of desflurane > halothane approximately enflurane > isoflurane approximately sevoflurane from a physiologic holding potential (-80 mV). This suggests that the contribution of Na channel block to anesthesia might vary in an agent-specific manner. From a hyperpolarized holding potential that minimizes inactivation (-120 mV), peak I(Na) was inhibited with a rank order of potency for tonic inhibition of peak I(Na) of halothane > isoflurane approximately sevoflurane > enflurane > desflurane. Desflurane produced the largest negative shift in voltage-dependence of fast inactivation consistent with its more prominent voltage-dependent effects. A comparison between isoflurane and halothane showed that halothane produced greater facilitation of current decay, slowing of recovery from fast inactivation, and use-dependent block than isoflurane. Conclusions Five halogenated inhaled anesthetics all inhibit a voltage-gated Na channel by voltage- and use-dependent mechanisms. Agent-specific differences in efficacy for Na channel inhibition due to differential state-dependent mechanisms creates pharmacologic diversity that could underlie subtle differences in anesthetic and nonanesthetic actions.

1998 ◽  
Vol 111 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Vasanth Vedantham ◽  
Stephen C. Cannon

Voltage-gated Na+ channels exhibit two forms of inactivation, one form (fast inactivation) takes effect on the order of milliseconds and the other (slow inactivation) on the order of seconds to minutes. While previous studies have suggested that fast and slow inactivation are structurally independent gating processes, little is known about the relationship between the two. In this study, we probed this relationship by examining the effects of slow inactivation on a conformational marker for fast inactivation, the accessibility of a site on the Na+ channel III–IV linker that is believed to form a part of the fast inactivation particle. When cysteine was substituted for phenylalanine at position 1304 in the rat skeletal muscle sodium channel (μl), application of [2-(trimethylammonium)ethyl]methanethiosulfonate (MTS-ET) to the cytoplasmic face of inside-out patches from Xenopus oocytes injected with F1304C RNA dramatically disrupted fast inactivation and displayed voltage-dependent reaction kinetics that closely paralleled the steady state availability (h∞•) curve. Based on this observation, the accessibility of cys1304 was used as a conformational marker to probe the position of the fast inactivation gate during the development of and the recovery from slow inactivation. We found that burial of cys1304 is not altered by the onset of slow inactivation, and that recovery of accessibility of cys1304 is not slowed after long (2–10 s) depolarizations. These results suggest that (a) fast and slow inactivation are structurally distinct processes that are not tightly coupled, (b) fast and slow inactivation are not mutually exclusive processes (i.e., sodium channels may be fast- and slow-inactivated simultaneously), and (c) after long depolarizations, recovery from fast inactivation precedes recovery from slow inactivation.


1995 ◽  
Vol 312 (2) ◽  
pp. 637-641 ◽  
Author(s):  
M Bouaboula ◽  
C Poinot-Chazel ◽  
B Bourrié ◽  
X Canat ◽  
B Calandra ◽  
...  

The G-protein-coupled central cannabinoid receptor (CB1) has been shown to be functionally associated with several biological responses including inhibition of adenylate cyclase, modulation of ion channels and induction of the immediate-early gene Krox-24. Using stably transfected Chinese Hamster Ovary cells expressing human CB1 we show here that cannabinoid treatment induces both phosphorylation and activation of mitogen-activated protein (MAP) kinases, and that these effects are inhibited by SR 141716A, a selective CB1 antagonist. The two p42 and p44 kDa MAP kinases are activated in a time- and dose-dependent manner. The rank order of potency for the activation of MAP kinases with various cannabinoid agonists is CP-55940 > delta 9-tetrahydrocannabinol > WIN 55212.2, in agreement with the pharmacological profile of CB1. The activation of MAP kinases is blocked by pertussis toxin but not by treatment with hydrolysis-resistant cyclic AMP analogues. This suggests that the signal transduction pathway between CB1 and MAP kinases involves a pertussis-toxin-sensitive GTP-binding protein and is independent of cyclic AMP metabolism. This coupling of CB1 subtype and mitogenic signal pathway, also observed in the human astrocytoma cell line U373 MG, may explain the mechanism of action underlying cannabinoid-induced Krox-24 induction.


1999 ◽  
Vol 113 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Vasanth Vedantham ◽  
Stephen C. Cannon

Lidocaine produces voltage- and use-dependent inhibition of voltage-gated Na+ channels through preferential binding to channel conformations that are normally populated at depolarized potentials and by slowing the rate of Na+ channel repriming after depolarizations. It has been proposed that the fast-inactivation mechanism plays a crucial role in these processes. However, the precise role of fast inactivation in lidocaine action has been difficult to probe because gating of drug-bound channels does not involve changes in ionic current. For that reason, we employed a conformational marker for the fast-inactivation gate, the reactivity of a cysteine substituted at phenylalanine 1304 in the rat adult skeletal muscle sodium channel α subunit (rSkM1) with [2-(trimethylammonium)ethyl]methanethiosulfonate (MTS-ET), to determine the position of the fast-inactivation gate during lidocaine block. We found that lidocaine does not compete with fast-inactivation. Rather, it favors closure of the fast-inactivation gate in a voltage-dependent manner, causing a hyperpolarizing shift in the voltage dependence of site 1304 accessibility that parallels a shift in the steady state availability curve measured for ionic currents. More significantly, we found that the lidocaine-induced slowing of sodium channel repriming does not result from a slowing of recovery of the fast-inactivation gate, and thus that use-dependent block does not involve an accumulation of fast-inactivated channels. Based on these data, we propose a model in which transitions along the activation pathway, rather than transitions to inactivated states, play a crucial role in the mechanism of lidocaine action.


2007 ◽  
Vol 107 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Wei OuYang ◽  
Hugh C. Hemmings

Abstract Background: Voltage-gated Na+ channels modulate membrane excitability in excitable tissues. Inhibition of Na+ channels has been implicated in the effects of volatile anesthetics on both nervous and peripheral excitable tissues. The authors investigated isoform-selective effects of isoflurane on the major Na+ channel isoforms expressed in excitable tissues. Methods: Rat Nav1.2, Nav1.4, or Nav1.5 α subunits heterologously expressed in Chinese hamster ovary cells were analyzed by whole cell voltage clamp recording. The effects of isoflurane on Na+ current activation, inactivation, and recovery from inactivation were analyzed. Results: The cardiac isoform Nav1.5 activated at more negative potentials (peak INa at −30 mV) than the neuronal Nav1.2 (0 mV) or skeletal muscle Nav1.4 (−10 mV) isoforms. Isoflurane reversibly inhibited all three isoforms in a concentration- and voltage-dependent manner at clinical concentrations (IC50 = 0.70, 0.61, and 0.45 mm, respectively, for Nav1.2, Nav1.4, and Nav1.5 from a physiologic holding potential of −70 mV). Inhibition was greater from a holding potential of −70 mV than from −100 mV, especially for Nav1.4 and Nav1.5. Isoflurane enhanced inactivation of all three isoforms due to a hyperpolarizing shift in the voltage dependence of steady state fast inactivation. Inhibition of Nav1.4 and Nav1.5 by isoflurane was attributed primarily to enhanced inactivation, whereas inhibition of Nav1.2, which had a more positive V1/2 of inactivation, was due primarily to tonic block. Conclusions: Two principal mechanisms contribute to Na+ channel inhibition by isoflurane: enhanced inactivation due to a hyperpolarizing shift in the voltage dependence of steady state fast inactivation (Nav1.5 ≈ Nav1.4 > Nav1.2) and tonic block (Nav1.2 > Nav1.4 ≈ Nav1.5). These novel mechanistic differences observed between isoforms suggest a potential pharmacologic basis for discrimination between Na+ channel isoforms to enhance anesthetic specificity.


2008 ◽  
Vol 198 (3) ◽  
pp. 561-569 ◽  
Author(s):  
Wenbin Shang ◽  
Ying Yang ◽  
Libin Zhou ◽  
Boren Jiang ◽  
Hua Jin ◽  
...  

A series of clinical trials and animal experiments have demonstrated that ginseng and its major active constituent, ginsenosides, possess glucose-lowering action. In our previous study, ginsenoside Rb1 has been shown to regulate peroxisome proliferator-activated receptor γ activity to facilitate adipogenesis of 3T3-L1 cells. However, the effect of Rb1 on glucose transport in insulin-sensitive cells and its molecular mechanism need further elucidation. In this study, Rb1 significantly stimulated basal and insulin-mediated glucose uptake in a time- and dose-dependent manner in 3T3-L1 adipocytes and C2C12 myotubes; the maximal effect was achieved at a concentration of 1 μM and a time of 3 h. In adipocytes, Rb1 promoted GLUT1 and GLUT4 translocations to the cell surface, which was examined by analyzing their distribution in subcellular membrane fractions, and enhanced translocation of GLUT4 was confirmed using the transfection of GLUT4-green fluorescence protein in Chinese Hamster Ovary cells. Meanwhile, Rb1 increased the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB), and stimulated phosphatidylinositol 3-kinase (PI3K) activity in the absence of the activation of the insulin receptor. Rb1-induced glucose uptake as well as GLUT1 and GLUT4 translocations was inhibited by the PI3K inhibitor. These results suggest that ginsenoside Rb1 stimulates glucose transport in insulin-sensitive cells by promoting translocations of GLUT1 and GLUT4 by partially activating the insulin signaling pathway. These findings are useful in understanding the hypoglycemic and anti-diabetic properties of ginseng and ginsenosides.


1985 ◽  
Vol 86 (5) ◽  
pp. 739-762 ◽  
Author(s):  
G K Wang ◽  
G Strichartz

The effects of a neurotoxin, purified from the venom of the scorpion Leiurus quinquestriatus, on the ionic currents of toad single myelinated fibers were studied under voltage-clamp conditions. Unlike previous investigations using crude scorpion venom, purified Leiurus toxin II alpha at high concentrations (200-400 nM) did not affect the K currents, nor did it reduce the peak Na current in the early stages of treatment. The activation of the Na channel was unaffected by the toxin, the activation time course remained unchanged, and the peak Na current vs. voltage relationship was not altered. In contrast, Na channel inactivation was considerably slowed and became incomplete. As a result, a steady state Na current was maintained during prolonged depolarizations of several seconds. These steady state Na currents had a different voltage dependence from peak Na currents and appeared to result from the opening of previously inactivated Na channels. The opening kinetics of the steady state current were exponential and had rates approximately 100-fold slower than the normal activation processes described for transitions from the resting state to the open state. In addition, the dependence of the peak Na current on the potential of preceding conditioning pulses was also dramatically altered by toxin treatment; this parameter reached a minimal value near a membrane potential of -50 mV and then increased continuously to a "plateau" value at potentials greater than +50 mV. The amplitude of this plateau was dependent on toxin concentration, reaching a maximum value equal to approximately 50% of the peak current; voltage-dependent reversal of the toxin's action limits the amplitude of the plateauing effect. The measured plateau effect was half-maximum at a toxin concentration of 12 nM, a value quite similar to the concentration producing half of the maximum slowing of Na channel inactivation. The results of Hill plots for these actions suggest that one toxin molecule binds to one Na channel. Thus, the binding of a single toxin molecule probably both produces the steady state currents and slows the Na channel inactivation. We propose that Leiurus toxin inhibits the conversion of the open state to inactivated states in a voltage-dependent manner, and thereby permits a fraction of the total Na permeability to remain at membrane potentials where inactivation is normally complete.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 206-213 ◽  
Author(s):  
P Mayer ◽  
C Lam ◽  
H Obenaus ◽  
E Liehl ◽  
J Besemer

The in vivo efficacy of glycosylated and nonglycosylated recombinant human granulocyte macrophage colony-stimulating factor (rh GM-CSF) expressed in Chinese hamster ovary cells and Escherichia coli respectively was studied in rhesus monkeys following a daily subcutaneous (SC; three times) or intravenous (IV; over six hours) dose for seven consecutive days. The monkeys responded to the rh GM-CSF with a prompt (within 24 hours) rise in circulating white blood cells (WBCs). Thereafter the total cell counts increased steadily in a dose- dependent manner with repeated dosing to numbers six times over the pretreatment levels. Overall, granulocyte counts increased fivefold, lymphocytes twofold to fourfold, and monocytes threefold to fourfold. Platelets and erythrocytes were unaffected. Within 1 week after the end of treatment the leukocytosis had disappeared. Of the two routes of treatment, SC (three times daily)-administered rh GM-CSF was more effective than the same dose given by a six-hour IV infusion. In addition to inducing leukocytosis, parenterally administered rh GM-CSF primed mature circulating granulocytes for enhanced oxidative metabolism and killing of an E coli strain. These results show that exogenously administered glycosylated or nonglycosylated rh GM-CSF is both an effective stimulator of leukocytosis and a potent activator of the phagocytic function of mature granulocytes in monkeys.


1994 ◽  
Vol 104 (2) ◽  
pp. 311-336 ◽  
Author(s):  
D H Cox ◽  
K Dunlap

We have studied the inactivation of high-voltage-activated (HVA), omega-conotoxin-sensitive, N-type Ca2+ current in embryonic chick dorsal root ganglion (DRG) neurons. Voltage steps from -80 to 0 mV produced inward Ca2+ currents that inactivated in a biphasic manner and were fit well with the sum of two exponentials (with time constants of approximately 100 ms and > 1 s). As reported previously, upon depolarization of the holding potential to -40 mV, N current amplitude was significantly reduced and the rapid phase of inactivation all but eliminated (Nowycky, M. C., A. P. Fox, and R. W. Tsien. 1985. Nature. 316:440-443; Fox, A. P., M. C. Nowycky, and R. W. Tsien. 1987a. Journal of Physiology. 394:149-172; Swandulla, D., and C. M. Armstrong. 1988. Journal of General Physiology. 92:197-218; Plummer, M. R., D. E. Logothetis, and P. Hess. 1989. Neuron. 2:1453-1463; Regan, L. J., D. W. Sah, and B. P. Bean. 1991. Neuron. 6:269-280; Cox, D. H., and K. Dunlap. 1992. Journal of Neuroscience. 12:906-914). Such kinetic properties might be explained by a model in which N channels inactivate by both fast and slow voltage-dependent processes. Alternatively, kinetic models of Ca-dependent inactivation suggest that the biphasic kinetics and holding-potential-dependence of N current inactivation could be due to a combination of Ca-dependent and slow voltage-dependent inactivation mechanisms. To distinguish between these possibilities we have performed several experiments to test for the presence of Ca-dependent inactivation. Three lines of evidence suggest that N channels inactivate in a Ca-dependent manner. (a) The total extent of inactivation increased 50%, and the ratio of rapid to slow inactivation increased approximately twofold when the concentration of the Ca2+ buffer, EGTA, in the patch pipette was reduced from 10 to 0.1 mM. (b) With low intracellular EGTA concentrations (0.1 mM), the ratio of rapid to slow inactivation was additionally increased when the extracellular Ca2+ concentration was raised from 0.5 to 5 mM. (c) Substituting Na+ for Ca2+ as the permeant ion eliminated the rapid phase of inactivation. Other results do not support the notion of current-dependent inactivation, however. Although high intracellular EGTA (10 mM) or BAPTA (5 mM) concentrations suppressed the rapid phase inactivation, they did not eliminate it. Increasing the extracellular Ca2+ from 0.5 to 5 mM had little effect on this residual fast inactivation, indicating that it is not appreciably sensitive to Ca2+ influx under these conditions.(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 324 (3) ◽  
pp. 971-980 ◽  
Author(s):  
Jwa Hwa CHO ◽  
M. BALASUBRAMANYAM ◽  
Galina CHERNAYA ◽  
Jeffrey P. GARDNER ◽  
Abraham AVIV ◽  
...  

Inhibitors of mitochondrial oxidative metabolism have been proposed to interfere with Ca2+ influx mediated by store-operated channels (SOC), secondary to their effects on ATP production. We assessed SOC activity by 45Ca2+ influx and fluorimetric measurements of free Ca2+ or Mn2+ quench in thapsigargin-treated Chinese hamster ovary cells and Jurkat T-cells, and additionally by electrophysiological measurements of the Ca2+-release-activated Ca2+ current (Icrac) in Jurkat T-cells. Various mitochondrial antagonists were confirmed to inhibit SOC. However, the following evidence supported the proposal that oligomycin, in particular, exerts an inhibitory effect on SOC in addition to its known actions on mitochondria and Na+-pump activity: (i) the concentrations of oligomycin required to inhibit SOC-mediated Ca2+ influx or Icrac (half-inhibitory concentration ∼2 μM) were nearly 50-fold higher than the concentrations that blocked mitochondrial ATP production; (ii) the rank order of potency of oligomycins A, B and C for decreasing SOC-mediated Ca2+ influx or Icrac differed from that known for inhibition of mitochondrial function; (iii) oligomycin blocked Icrac under voltage clamp and with intracellular Na+ and K+ concentrations fixed by dialysis from the patch pipette, arguing that the effect was not secondary to membrane polarization or pump activity; and (iv) fixing the cytosolic ATP concentration by dialysis from the patch pipette attenuated rotenone- but not oligomycin-mediated inhibition of Icrac. Oligomycin also blocked volume-activated Cl- currents, a profile common to some other known blockers of SOC that are not known mitochondrial inhibitors. These findings raise the possibility that oligomycin interacts directly with SOC, and thus may extend the known pharmacological profile for this type of Ca2+-influx pathway.


1997 ◽  
Vol 86 (2) ◽  
pp. 428-439 ◽  
Author(s):  
L. Ratnakumari ◽  
H. C. Hemmings

Background Previous electrophysiologic studies have implicated voltage-dependent Na+ channels as a molecular site of action for propofol. This study considered the effects of propofol on Na+ channel-mediated Na+ influx and neurotransmitter release in rat brain synaptosomes (isolated presynaptic nerve terminals). Methods Purified cerebrocortical synaptosomes from adult rats were used to determine the effects of propofol on Na+ influx through voltage-dependent Na+ channels (measured using 22Na+) and intracellular [Na+] (measured by ion-specific spectrofluorimetry). For comparison, the effects of propofol on synaptosomal glutamate release evoked by 4-aminopyridine (Na+ channel dependent), veratridine (Na+ channel dependent), KCi (Na+ channel independent) were studied using enzyme-coupled fluorimetry. Results Propofol inhibited veratridine-evoked 22Na+ influx (inhibitory concentration of 50% [IC50] = 46 microM; 8.9 microM free) and changes in intracellular [Na+] (IC50 = 13 microM; 6.3 microM free) in synaptosomes in a dose-dependent manner. Propofol also inhibited 4-aminopyridine-evoked (IC50 = 39 microM; 19 microM free) and veratridine (20 microM)-evoked (IC50 = 30 microM; 14 microM free), but not KCi-evoked (up to 100 microM) glutamate release from synaptosomes. Conclusions Inhibition of Na+ channel-mediated Na+ influx, increased in intracellular [Na+], and glutamate release occurred in synaptosomes at concentrations of propofol achieved clinically. These results support a role for neuronal voltage-dependent Na+ channels as a molecular target for presynaptic general anesthetic effects.


Sign in / Sign up

Export Citation Format

Share Document