scholarly journals Kinetic analysis of the action of Leiurus scorpion alpha-toxin on ionic currents in myelinated nerve.

1985 ◽  
Vol 86 (5) ◽  
pp. 739-762 ◽  
Author(s):  
G K Wang ◽  
G Strichartz

The effects of a neurotoxin, purified from the venom of the scorpion Leiurus quinquestriatus, on the ionic currents of toad single myelinated fibers were studied under voltage-clamp conditions. Unlike previous investigations using crude scorpion venom, purified Leiurus toxin II alpha at high concentrations (200-400 nM) did not affect the K currents, nor did it reduce the peak Na current in the early stages of treatment. The activation of the Na channel was unaffected by the toxin, the activation time course remained unchanged, and the peak Na current vs. voltage relationship was not altered. In contrast, Na channel inactivation was considerably slowed and became incomplete. As a result, a steady state Na current was maintained during prolonged depolarizations of several seconds. These steady state Na currents had a different voltage dependence from peak Na currents and appeared to result from the opening of previously inactivated Na channels. The opening kinetics of the steady state current were exponential and had rates approximately 100-fold slower than the normal activation processes described for transitions from the resting state to the open state. In addition, the dependence of the peak Na current on the potential of preceding conditioning pulses was also dramatically altered by toxin treatment; this parameter reached a minimal value near a membrane potential of -50 mV and then increased continuously to a "plateau" value at potentials greater than +50 mV. The amplitude of this plateau was dependent on toxin concentration, reaching a maximum value equal to approximately 50% of the peak current; voltage-dependent reversal of the toxin's action limits the amplitude of the plateauing effect. The measured plateau effect was half-maximum at a toxin concentration of 12 nM, a value quite similar to the concentration producing half of the maximum slowing of Na channel inactivation. The results of Hill plots for these actions suggest that one toxin molecule binds to one Na channel. Thus, the binding of a single toxin molecule probably both produces the steady state currents and slows the Na channel inactivation. We propose that Leiurus toxin inhibits the conversion of the open state to inactivated states in a voltage-dependent manner, and thereby permits a fraction of the total Na permeability to remain at membrane potentials where inactivation is normally complete.

1996 ◽  
Vol 199 (4) ◽  
pp. 941-948 ◽  
Author(s):  
J Spafford ◽  
N Grigoriev ◽  
A Spencer

The Na+ current of 'swimming motor neurones' in the hydromedusan Polyorchis penicillatus was tetrodotoxin-insensitive. The local anaesthetics lidocaine and procainamide caused partial, non use-dependent blockade of the Na+ channel. Veratridine produced partial blockade of the Na+ channel without affecting inactivation. An order of blocking potency of di- and trivalent cations was established as: La3+ = Zn2+ = Cd2+ > Ni2+ > Mn2+ = Co2+ > Ca2+ > Ba2+ > Mg2+. All these cations, except Ba2+, produced depolarizing shifts in the conductance-voltage curves. Even at relatively high concentrations, the dihydropyridines nicardipine, nitrendipine and (+)Bay K 8644 produced only weak blockade of the Na+ current; while nimodipine, nifedipine and (-)Bay K 8644 were ineffective. Diltiazem and verapamil weakly blocked the Na+ current in a dose-dependent manner with no evidence of use-dependence. The calmodulin inhibitors W7 and calmidazolium were ineffective blockers of Na+ currents. Crude Conus venoms and the Conus peptides, µ-conotoxin GIIA, µO-conotoxin MrVIA, omega-conotoxin GVIA and omega-conotoxin MVIIC, were without effect. Capsaicin produced rapid, reversable blockade of Na+ current. It has been suggested that 'primitive' Na+ channels could be expected to have pharmacological properties that are intermediate between those of Na+ and Ca2+ channels. If such channels exist, the Na+ channel described here is clearly not one of them.


1987 ◽  
Vol 89 (4) ◽  
pp. 645-667 ◽  
Author(s):  
G K Wang ◽  
M S Brodwick ◽  
D C Eaton ◽  
G R Strichartz

In order to test the requirement of Na channel inactivation for the action of local anesthetics, we investigated the inhibitory effects of quaternary and tertiary amine anesthetics on normally inactivating and noninactivating Na currents in squid axons under voltage clamp. Either the enzymatic mixture pronase, or chloramine-T (CT), a noncleaving, oxidizing reagent, was used to abolish Na channel inactivation. We found that both the local anesthetics QX-314 and etidocaine, when perfused internally at 1 mM, elicited a "tonic" (resting) block of Na currents, a "time-dependent" block that increased during single depolarizations, and a "use-dependent" (phasic) block that accumulated as a result of repetitive depolarizations. All three effects occurred in both control and CT-treated axons. As in previous reports, little time-dependent or phasic block by QX-314 appeared in pronase-treated axons, although tonic block remained. Time-dependent block was greatest and fastest at large depolarizations (Em greater than +60 mV) for both the control and CT-treated axons. The recovery kinetics from phasic block were the same in control and CT-modified axons. The voltage dependence of the steady state phasic block in CT-treated axons differed from that in the controls; an 8-10% reduction of the maximum phasic block and a steepening and shift of the voltage dependence in the hyperpolarizing direction resulted from CT treatment. The results show that these anesthetics can bind rapidly to open Na channels in a voltage-dependent manner, with no requirement for fast inactivation. We propose that the rapid phasic blocking reactions in nerve are consequences primarily of channel activation, mediated by binding of anesthetics to open channels, and that the voltage dependence of phasic block arises directly from that of channel activation.


1982 ◽  
Vol 79 (5) ◽  
pp. 739-758 ◽  
Author(s):  
D R Matteson ◽  
C M Armstrong

We have studied the effects of temperature changes on Na currents in squid giant axons. Decreases in temperature in the 15-1 degrees C range decrease peak Na current with a Q10 of 2.2. Steady state currents, which are tetrodotoxin sensitive and have the same reversal potential as peak currents, are almost unaffected by temperature changes. After removal of inactivation by pronase treatment, steady state current amplitude has a Q10 of 2.3. Na currents generated at large positive voltages sometimes exhibit a biphasic activation pattern. The first phase activates rapidly and partially inactivates and is followed by a secondary slow current increase that lasts several milliseconds. Peak Na current amplitude can be increased by delivering large positive prepulses, an effect that is more pronounced at low temperatures. The slow activation phase is eliminated after a positive prepulse. The results are consistent with the hypothesis that there are two forms of the Na channel: (a) rapidly activating channels that completely inactivate, and (b) slowly activating "sleepy" channels that inactivate slowly if at all. Some fast channels are assumed to be converted to sleepy channels by cooling, possibly because of a phase transition in the membrane. The existence of sleepy channels complicates the determination of the Q10 of gating parameters and single-channel conductance.


1997 ◽  
Vol 87 (6) ◽  
pp. 1507-1516 ◽  
Author(s):  
Henry U. Weigt ◽  
Wai-Meng Kwok ◽  
Georg C. Rehmert ◽  
Lawrence A. Turner ◽  
Zeljko J. Bosnjak

Background Alpha1-adrenoceptor stimulation is known to produce electrophysiologic changes in cardiac tissues, which may involve modulations of the fast inward Na+ current (I(Na)). A direct prodysrhythmic alpha1-mediated interaction between catecholamines and halothane has been demonstrated, supporting the hypothesis that generation of halothane-epinephrine dysrhythmias may involve slowed conduction, leading to reentry. In this study, we examined the effects of a selective alpha1-adrenergic receptor agonist, methoxamine, on cardiac I(Na) in the absence and presence of equianesthetic concentrations of halothane and isoflurane in single ventricular myocytes from adult guinea pig hearts. Methods I(Na) was recorded using the standard whole-cell configuration of the patch-clamp technique. Voltage clamp protocols initiated from two different holding potentials (V(H)) were applied to examine state-dependent effects of methoxamine in the presence of anesthetics. Steady state activation and inactivation and recovery from inactivation were characterized using standard protocols. Results Methoxamine decreased I(Na) in a concentration- and voltage-dependent manner, being more potent at the depolarized V(H). Halothane and isoflurane interacted synergistically with methoxamine to suppress I(Na) near the physiologic cardiac resting potential of -80 mV. The effect of methoxamine with anesthetics appeared to be additive when using a V(H) of -110 mV, a potential where no Na+ channels are in the inactivated state. Methoxamine in the absence and presence of anesthetics significantly shifted the half maximal inactivation voltage in the hyperpolarizing direction but had no effect on steady-state activation. Conclusion The present results show that methoxamine (alpha1-adrenergic stimulation) decreases cardiac Na+ current in a concentration- and voltage-dependent manner. Further, a form of synergistic interaction between methoxamine and inhalational anesthetics, halothane and isoflurane, was observed. This interaction appears to depend on the fraction of Na+ channels in the inactivated state. (Key words: Anesthetics, volatile: halothane; isoflurane; methoxamine. Patch clamp: whole-cell configuration; sodium current; ventricular guinea pig myocytes.)


1990 ◽  
Vol 258 (4) ◽  
pp. H977-H982 ◽  
Author(s):  
B. Schubert ◽  
A. M. Vandongen ◽  
G. E. Kirsch ◽  
A. M. Brown

The mechanism by which the beta-adrenergic agonist isoproterenol (ISO) modulates voltage-dependent cardiac Na+ currents (INa) was studied in single ventricular myocytes of neonatal rat using the gigaseal patch-clamp technique. ISO inhibited INa reversibly, making the effect readily distinguishable from the monotonic decrease of INa caused by the shift in gating that customarily occurs during whole cell patch-clamp experiments (E. Fenwick, A. Marty, and E. Neher, J. Physiol. Lond. 331: 599-635, 1982; and J. M. Fernandez, A. P. Fox, and S. Krasne, J. Physiol. Lond. 356: 565-585, 1984). The inhibition was biphasic, having fast and slow components, and was voltage-dependent, being more pronounced at depolarized potentials. In whole cell experiments the membrane-permeable adenosine 3',5'-cyclic monophosphate (cAMP) congener 8-bromo-cAMP reduced INa. In cell-free inside-out patches with ISO present in the pipette, guanosine 5'-triphosphate (GTP) applied to the inner side of the membrane patch inhibited single Na+ channel activity. This inhibition could be partly reversed by hyperpolarizing prepulses. The nonhydrolyzable GTP analogue guanosine-5'-O-(3-thiotriphosphate) greatly reduced the probability of single Na+ channel currents in a Mg2(+)-dependent manner. We propose that ISO inhibits cardiac Na+ channels via the guanine nucleotide binding, signal-transducing G protein that acts through both direct (membrane delimited) and indirect (cytoplasmic) pathways.


1985 ◽  
Vol 85 (4) ◽  
pp. 583-602 ◽  
Author(s):  
G S Oxford ◽  
J Z Yeh

Inactivation of Na channels has been studied in voltage-clamped, internally perfused squid giant axons during changes in the ionic composition of the intracellular solution. Peak Na currents are reduced when tetramethylammonium ions (TMA+) are substituted for Cs ions internally. The reduction reflects a rapid, voltage-dependent block of a site in the channel by TMA+. The estimated fractional electrical distance for the site is 10% of the channel length from the internal surface. Na tail currents are slowed by TMA+ and exhibit kinetics similar to those seen during certain drug treatments. Steady state INa is simultaneously increased by TMA+, resulting in a "cross-over" of current traces with those in Cs+ and in greatly diminished inactivation at positive membrane potentials. Despite the effect on steady state inactivation, the time constants for entry into and exit from the inactivated state are not significantly different in TMA+ and Cs+. Increasing intracellular Na also reduces steady state inactivation in a dose-dependent manner. Ratios of steady state INa to peak INa vary from approximately 0.14 in Cs+- or K+-perfused axons to approximately 0.4 in TMA+- or Na+-perfused axons. These results are consistent with a scheme in which TMA+ or Na+ can interact with a binding site near the inner channel surface that may also be a binding or coordinating site for a natural inactivation particle. A simple competition between the ions and an inactivation particle is, however, not sufficient to account for the increase in steady state INa, and changes in the inactivation process itself must accompany the interaction of TMA+ and Na+ with the channel.


1988 ◽  
Vol 254 (6) ◽  
pp. H1157-H1166 ◽  
Author(s):  
J. A. Wasserstrom ◽  
J. J. Salata

We studied the effects of tetrodotoxin (TTX) and lidocaine on transmembrane action potentials and ionic currents in dog isolated ventricular myocytes. TTX (0.1-1 x 10(-5) M) and lidocaine (0.5-2 x 10(-5) M) decreased action potential duration, but only TTX decreased the maximum rate of depolarization (Vmax). Both TTX (1-2 x 10(-5) M) and lidocaine (2-5 x 10(-5) M) blocked a slowly inactivating toward current in the plateau voltage range. The voltage- and time-dependent characteristics of this current are virtually identical to those described in Purkinje fibers for the slowly inactivating inward Na+ current. In addition, TTX abolished the outward shift in net current at plateau potentials caused by lidocaine alone. Lidocaine had no detectable effect on the slow inward Ca2+ current and the inward K+ current rectifier, Ia. Our results indicate that 1) there is a slowly inactivating inward Na+ current in ventricular cells similar in time, voltage, and TTX sensitivity to that described in Purkinje fibers; 2) both TTX and lidocaine shorten ventricular action potentials by reducing this slowly inactivating Na+ current; 3) lidocaine has no additional actions on other ionic currents that contribute to its ability to abbreviate ventricular action potentials; and 4) although both agents shorten the action potential by the same mechanism, only TTX reduces Vmax. This last point suggests that TTX produces tonic block of Na+ current, whereas lidocaine may produce state-dependent Na+ channel block, namely, blockade of Na+ current only after Na+ channels have already been opened (inactivated-state block).


1991 ◽  
Vol 65 (4) ◽  
pp. 989-1002 ◽  
Author(s):  
H. Sontheimer ◽  
S. G. Waxman ◽  
B. R. Ransom

1. Cell-cell coupling between hippocampal astrocytes in culture was studied by following the intracellular spread of the low molecular weight fluorescent dye Lucifer yellow (LY). Dye coupling appeared as early as 24 h after plating, at which time approximately 20% of all astrocytes that physically contacted neighboring cells showed dye coupling. 2. The percentage of coupled cells increased with time in culture and peaked after 10 days in vitro (DIV) when approximately 50% of astrocytes showed coupling. Further time in culture, up to 20 DIV, did not increase the percentage of coupled cells. Thus, coupled and noncoupled astrocytes coexist in hippocampal cultures in approximately equal numbers. 3. Na+ currents were expressed in a subpopulation of hippocampal astrocytes and changed characteristics during in vitro development. A "neuronal type" of Na+ current, so called because of an h alpha curve that had a midpoint near -60 mV, was observed within the first 5 days post-plating. A "glial type" of Na+ current, characterized by a -25 mV shift in its h alpha curve, was only expressed after 6 days in culture. 4. Na+ current expression was restricted to hippocampal astrocytes that did not exhibit dye coupling; astrocytes that exhibited dye coupling (n = 39) did not show measurable Na+ currents. 5. The failure to see Na+ currents in coupled astrocytes cannot be explained by insufficient space-clamp since astrocytes acutely uncoupled with octanol (10 microM) did not reveal Na+ current expression. Control experiments showed that low concentrations of octanol (i.e., 10-100 microM) did not block Na+ currents; blockage of Na+ currents by octanol was only observed at high concentrations (e.g., 50-fold the concentration used for uncoupling). These observations support the idea that Na(+)-channel expression was restricted to noncoupled astrocytes. 6. The time courses for the development of cell coupling and Na+ current expression appeared to be inversely correlated and suggested a gradual increase in cell coupling in concert with a loss in Na+ current expression with time in culture.


1989 ◽  
Vol 257 (5) ◽  
pp. H1693-H1704
Author(s):  
C. F. Starmer ◽  
A. I. Undrovinas ◽  
F. Scamps ◽  
G. Vassort ◽  
V. V. Nesterenko ◽  
...  

The effect on calcium channels of the sodium channel antagonist, ethacizin, was studied in isolated frog ventricular cells using the whole cell voltage-clamp methodology. Ethacizin was found to block inward calcium current in a frequency-, voltage-, and concentration-dependent manner. The frequency-dependent blocking properties were modeled by considering the drug interaction with a voltage-dependent mixture of calcium channels harboring either an accessible or an inaccessible binding site. With repetitive stimulation, the pulse-to-pulse reduction in peak current is shown to be exponential, with a rate linearly related to the interstimulus interval and the drug concentration. Observed frequency- and concentration-dependent blocks were consistent with the predictions of the model, and mixture-specific rate constants were estimated from these data. The negligible shift in channel inactivation and the reduction of apparent binding and unbinding rates with more polarized membrane potentials imply the active moiety of ethacizin blocks open channels and is trapped within the channel at resting membrane potentials. The binding rate at 0 mV is similar to that observed in studies of interactions of other open channel blocking agents with voltage- and ligand-gated channels.


2020 ◽  
Vol 52 (3) ◽  
pp. 320-327 ◽  
Author(s):  
Jin Ryeol An ◽  
Hojung Kang ◽  
Hongliang Li ◽  
Mi Seon Seo ◽  
Hee Seok Jung ◽  
...  

Abstract In this study, we explore the inhibitory effects of protriptyline, a tricyclic antidepressant drug, on voltage-dependent K+ (Kv) channels of rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Protriptyline inhibited the vascular Kv current in a concentration-dependent manner, with an IC50 value of 5.05 ± 0.97 μM and a Hill coefficient of 0.73 ± 0.04. Protriptyline did not affect the steady-state activation kinetics. However, the drug shifted the steady-state inactivation curve to the left, suggesting that protriptyline inhibited the Kv channels by changing their voltage sensitivity. Application of 20 repetitive train pulses (1 or 2 Hz) progressively increased the protriptyline-induced inhibition of the Kv current, suggesting that protriptyline inhibited Kv channels in a use (state)-dependent manner. The extent of Kv current inhibition by protriptyline was similar during the first, second, and third step pulses. These results suggest that protriptyline-induced inhibition of the Kv current mainly occurs principally in the closed state. The increase in the inactivation recovery time constant in the presence of protriptyline also supported use (state)-dependent inhibition of Kv channels by the drug. In the presence of the Kv1.5 inhibitor, protriptyline did not induce further inhibition of the Kv channels. However, pretreatment with a Kv2.1 or Kv7 inhibitor induced further inhibition of Kv current to a similar extent to that observed with protriptyline alone. Thus, we conclude that protriptyline inhibits the vascular Kv channels in a concentration- and use-dependent manner by changing their gating properties. Furthermore, protriptyline-induced inhibition of Kv channels mainly involves the Kv1.5.


Sign in / Sign up

Export Citation Format

Share Document