Does Augmented Reality Navigation Increase Pedicle Screw Density Compared to Free-Hand Technique in Deformity Surgery? Single Surgeon Case Series of 44 Patients

Spine ◽  
2020 ◽  
Vol 45 (17) ◽  
pp. E1085-E1090 ◽  
Author(s):  
Erik Edström ◽  
Gustav Burström ◽  
Oscar Persson ◽  
Anastasios Charalampidis ◽  
Rami Nachabe ◽  
...  
2019 ◽  
Vol 31 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Camilo A. Molina ◽  
Nicholas Theodore ◽  
A. Karim Ahmed ◽  
Erick M. Westbroek ◽  
Yigal Mirovsky ◽  
...  

OBJECTIVEAugmented reality (AR) is a novel technology that has the potential to increase the technical feasibility, accuracy, and safety of conventional manual and robotic computer-navigated pedicle insertion methods. Visual data are directly projected to the operator’s retina and overlaid onto the surgical field, thereby removing the requirement to shift attention to a remote display. The objective of this study was to assess the comparative accuracy of AR-assisted pedicle screw insertion in comparison to conventional pedicle screw insertion methods.METHODSFive cadaveric male torsos were instrumented bilaterally from T6 to L5 for a total of 120 inserted pedicle screws. Postprocedural CT scans were obtained, and screw insertion accuracy was graded by 2 independent neuroradiologists using both the Gertzbein scale (GS) and a combination of that scale and the Heary classification, referred to in this paper as the Heary-Gertzbein scale (HGS). Non-inferiority analysis was performed, comparing the accuracy to freehand, manual computer-navigated, and robotics-assisted computer-navigated insertion accuracy rates reported in the literature. User experience analysis was conducted via a user experience questionnaire filled out by operators after the procedures.RESULTSThe overall screw placement accuracy achieved with the AR system was 96.7% based on the HGS and 94.6% based on the GS. Insertion accuracy was non-inferior to accuracy reported for manual computer-navigated pedicle insertion based on both the GS and the HGS scores. When compared to accuracy reported for robotics-assisted computer-navigated insertion, accuracy achieved with the AR system was found to be non-inferior when assessed with the GS, but superior when assessed with the HGS. Last, accuracy results achieved with the AR system were found to be superior to results obtained with freehand insertion based on both the HGS and the GS scores. Accuracy results were not found to be inferior in any comparison. User experience analysis yielded “excellent” usability classification.CONCLUSIONSAR-assisted pedicle screw insertion is a technically feasible and accurate insertion method.


Author(s):  
Valentina Pennacchietti ◽  
Katharina Stoelzel ◽  
Anna Tietze ◽  
Erwin Lankes ◽  
Andreas Schaumann ◽  
...  

Abstract Introduction Endoscopic skull base approaches are broadly used in modern neurosurgery. The support of neuronavigation can help to effectively target the lesion avoiding complications. In children, endoscopic-assisted skull base surgery in combination with navigation systems becomes even more important because of the morphological variability and rare diseases affecting the sellar and parasellar regions. This paper aims to analyze our first experience on augmented reality navigation in endoscopic skull base surgery in a pediatric case series. Patients and methods A retrospective review identified seventeen endoscopic-assisted endonasal or transoral procedures performed in an interdisciplinary setting in a period between October 2011 and May 2020. In all the cases, the surgical target was a lesion in the sellar or parasellar region. Clinical conditions, MRI appearance, intraoperative conditions, postoperative MRI, possible complications, and outcomes were analyzed. Results The mean age of our patients was 14.5 ± 2.4 years. The diagnosis varied, but craniopharyngiomas (31.2%) were mostly represented. AR navigation was experienced to be very helpful for effectively targeting the lesion and defining the intraoperative extension of the pathology. In 65% of the oncologic cases, a radical removal was proven in postoperative MRI. The mean follow-up was 89 ± 79 months. There were no deaths in our series. No long-term complications were registered; two cerebrospinal fluid (CSF) fistulas and a secondary abscess required further surgery. Conclusion The implementation of augmented reality to endoscopic-assisted neuronavigated procedures within the skull base was feasible and did provide relevant information directly in the endoscopic field of view and was experienced to be useful in the pediatric cases, where anatomical variability and rarity of the pathologies make surgery more challenging.


2011 ◽  
Vol 69 (suppl_1) ◽  
pp. ons14-ons19 ◽  
Author(s):  
Cristian J Luciano ◽  
P Pat Banerjee ◽  
Brad Bellotte ◽  
G Michael Oh ◽  
Michael Lemole ◽  
...  

Abstract BACKGROUND: We evaluated the use of a part-task simulator with 3D and haptic feedback as a training tool for a common neurosurgical procedure - placement of thoracic pedicle screws. OBJECTIVE: To evaluate the learning retention of thoracic pedicle screw placement on a high-performance augmented reality and haptic technology workstation. METHODS: Fifty-one fellows and residents performed thoracic pedicle screw placement on the simulator. The virtual screws were drilled into a virtual patient's thoracic spine derived from a computed tomography data set of a real patient. RESULTS: With a 12.5% failure rate, a 2-proportion z test yielded P = .08. For performance accuracy, an aggregate Euclidean distance deviation from entry landmark on the pedicle and a similar deviation from the target landmark in the vertebral body yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the practice to the test sessions, and the alternative hypothesis assumes an improvement. CONCLUSION: The performance accuracy on the simulator was comparable to the accuracy reported in literature on recent retrospective evaluation of such placements. The failure rates indicated a minor drop from practice to test sessions, and also indicated a trend (P = .08) toward learning retention resulting in improvement from practice to test sessions. The performance accuracy showed a 15% mean score improvement and more than a 50% reduction in standard deviation from practice to test. It showed evidence (P = .04) of performance accuracy improvement from practice to test session.


2020 ◽  
Vol 32 (4) ◽  
pp. 542-547 ◽  
Author(s):  
Huan Liu ◽  
Junlong Wu ◽  
Yu Tang ◽  
Haiyin Li ◽  
Wenkai Wang ◽  
...  

OBJECTIVEThe authors aimed to assess, in a bone-agar experimental setting, the feasibility and accuracy of percutaneous lumbar pedicle screw placements using an intraoperative CT image–based augmented reality (AR)–guided method compared to placements using a radiograph-guided method. They also compared two AR hologram alignment methods.METHODSTwelve lumbar spine sawbones were completely embedded in hardened opaque agar, and a cubic marker was fixed on each phantom. After intraoperative CT, a 3D model of each phantom was generated, and a specialized application was deployed into an AR headset (Microsoft HoloLens). One hundred twenty pedicle screws, simulated by Kirschner wires (K-wires), were placed by two experienced surgeons, who each placed a total of 60 screws: 20 placed with a radiograph-guided technique, 20 with an AR technique in which the hologram was manually aligned, and 20 with an AR technique in which the hologram was automatically aligned. For each K-wire, the insertion path was expanded to a 6.5-mm diameter to simulate a lumbar pedicle screw. CT imaging of each phantom was performed after all K-wire placements, and the operative time required for each K-wire placement was recorded. An independent radiologist rated all images of K-wire placements. Outcomes were classified as grade I (no pedicle perforation), grade II (screw perforation of the cortex by up to 2 mm), or grade III (screw perforation of the cortex by > 2 mm). In a clinical situation, placements scored as grade I or II would be acceptable and safe for patients.RESULTSAmong all screw placements, 75 (94%) of 80 AR-guided placements and 40 (100%) of 40 radiograph-guided placements were acceptable (i.e., grade I or II; p = 0.106). Radiograph-guided placements had more grade I outcomes than the AR-guided method (p < 0.0001). The accuracy of the two AR alignment methods (p = 0.526) was not statistically significantly different, and neither was it different between the AR and radiograph groups (p < 0.0001). AR-guided placements required less time than the radiograph-guided placements (mean ± standard deviation, 131.76 ± 24.57 vs 181.43 ± 15.82 seconds, p < 0.0001). Placements performed using the automatic-alignment method required less time than those using the manual-alignment method (124.20 ± 23.80 vs 139.33 ± 23.21 seconds, p = 0.0081).CONCLUSIONSIn bone-agar experimental settings, AR-guided percutaneous lumbar pedicle screw placements were acceptable and more efficient than radiograph-guided placements. In a comparison of the two AR-guided placements, the automatic-alignment method was as accurate as the manual method but more efficient. Because of some limitations, the AR-guided system cannot be recommended in a clinical setting until there is significant improvement of this technology.


2019 ◽  
Vol 18 (5) ◽  
pp. 496-502 ◽  
Author(s):  
Erik Edström ◽  
Gustav Burström ◽  
Rami Nachabe ◽  
Paul Gerdhem ◽  
Adrian Elmi Terander

Abstract BACKGROUND Treatment of several spine disorders requires placement of pedicle screws. Detailed 3-dimensional (3D) anatomic information facilitates this process and improves accuracy. OBJECTIVE To present a workflow for a novel augmented-reality-based surgical navigation (ARSN) system installed in a hybrid operating room for anatomy visualization and instrument guidance during pedicle screw placement. METHODS The workflow includes surgical exposure, imaging, automatic creation of a 3D model, and pedicle screw path planning for instrument guidance during surgery as well as the actual screw placement, spinal fixation, and wound closure and intraoperative verification of the treatment results. Special focus was given to process integration and minimization of overhead time. Efforts were made to manage staff radiation exposure avoiding the need for lead aprons. Time was kept throughout the procedure and subdivided to reflect key steps. The navigation workflow was validated in a trial with 20 cases requiring pedicle screw placement (13/20 scoliosis). RESULTS Navigated interventions were performed with a median total time of 379 min per procedure (range 232-548 min for 4-24 implanted pedicle screws). The total procedure time was subdivided into surgical exposure (28%), cone beam computed tomography imaging and 3D segmentation (2%), software planning (6%), navigated surgery for screw placement (17%) and non-navigated instrumentation, wound closure, etc (47%). CONCLUSION Intraoperative imaging and preparation for surgical navigation totaled 8% of the surgical time. Consequently, ARSN can routinely be used to perform highly accurate surgery potentially decreasing the risk for complications and revision surgery while minimizing radiation exposure to the staff.


2020 ◽  
Vol 72 ◽  
pp. 350-356 ◽  
Author(s):  
Nhu Q. Nguyen ◽  
Stefano M. Priola ◽  
Joel M. Ramjist ◽  
Daipayan Guha ◽  
Yuta Dobashi ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Neil Manson ◽  
Dana El-Mughayyar ◽  
Erin Bigney ◽  
Eden Richardson ◽  
Edward Abraham

Study Design. Clinical case series. Background. Percutaneous stabilization for spinal trauma confers less blood loss, reduces postoperative pain, and is less invasive than open stabilization and fusion. The current standard of care includes instrumentation removal. Objective. 1. Reporting patient outcomes following minimally invasive posterior percutaneous pedicle screw-rod stabilization (PercStab). 2. Evaluating the results of instrumentation retention. Methods. A prospective observational study of 32 consecutive patients receiving PercStab without direct decompression or fusion. Baseline data demographics were collected. Operative outcomes of interest were operative room (OR) time, blood loss, and length of hospital stay. Follow-up variables of interest included patient satisfaction, Numeric Rating Scales for Back and Leg (NRS-B/L) pain, Oswestry Disability Index (ODI), and return to work. Clinical outcome data (ODI and NRS-B/L) were collected at 3, 12, 24 months and continued at a 24-month interval up to a maximum of 8 years postoperatively. Results. 81.25% of patients (n = 26) retained their instrumentation and reported minimal disability, mild pain, and satisfaction with their surgery and returned to work (mean = 6 months). Six patients required instrumentation removal due to prominence of the instrumentation or screw loosening, causing discomfort/pain. Instrumentation removal patients reported moderate back and leg pain until removal occurred; after removal, they reported minimal disability and mild pain. Neither instrumentation removal nor retention resulted in complications or further surgical intervention. Conclusions. PercStab without instrumentation removal provided high patient satisfaction, mild pain, and minimal disability and relieved the patient from the burden of finances and resources allocation of a second surgery.


Sign in / Sign up

Export Citation Format

Share Document