An Increased Kyphosis of the Thoracolumbar Junction is Correlated to More Axial Vertebral Rotation in Thoracolumbar/Lumbar Adolescent Idiopathic Scoliosis

Spine ◽  
2010 ◽  
Vol 35 (23) ◽  
pp. E1334-E1338 ◽  
Author(s):  
Haijian Ni ◽  
Xiaodong Zhu ◽  
Shisheng He ◽  
Changwei Yang ◽  
Chuanfeng Wang ◽  
...  
2020 ◽  
pp. 219256822094883
Author(s):  
Kristóf József ◽  
Ádám Tibor Schlégl ◽  
Máté Burkus ◽  
István Márkus ◽  
Ian O’Sullivan ◽  
...  

Study Design: Retrospective cross-sectional study. Objectives: It is generally believed that the apical vertebra has the largest axial rotation in adolescent idiopathic scoliosis. We investigated the relationship between apical axial vertebral rotation (apicalAVR) and maximal axial vertebral rotation (maxAVR) in both major and minor curves using biplanar stereo-imaging. Methods: EOS 2D/3D biplanar radiograph images were collected from 332 patients with adolescent idiopathic scoliosis (Cobb angle range 10°-122°, mean age 14.7 years). Based on the X-ray images, with the help of 3D full spine reconstructions Cobb angle, curvature level, apicalAVR and maxAVR were determined. These parameters were also determined for minor curves in Lenke 2, 3, 4, 6 type patients. Maximal thoracic rotation and maximal thoracolumbar/lumbar rotation were calculated. Statistical analysis was performed with descriptive statistics, Shapiro-Wilk test, and Wilcoxon signed-rank test. Results: The apical vertebrae were the most rotated vertebra in only 40.4% of the major curves, and 31.7% in minor curves. MaxAVR significantly exceeded apicalAVR values in the major curves ( P < .001) as well as in minor curves ( P < .001). The 2 parameters differed significantly in each severity group and Lenke type. Conclusions: The apical vertebrae were not the most rotated vertebra in more than half of cases investigated indicating that apicalAVR and maxAVR should be considered as 2 distinct parameters, of which maxAVR fully describes the axial dimension of scoliosis. Furthermore, the substitution of maxAVR for the apicalAVR should be especially avoided in double and triple curves, as the apical vertebra was even less commonly the most rotated in minor curves.


2016 ◽  
Vol 6 (1_suppl) ◽  
pp. s-0036-1583044-s-0036-1583044
Author(s):  
Khalil Kharrat ◽  
Amer Sebaaly ◽  
Ayman Assi ◽  
Ismat Ghanem ◽  
Rami Rachkidi

2015 ◽  
Vol 5 (1_suppl) ◽  
pp. s-0035-1554360-s-0035-1554360
Author(s):  
Dong-Gune Chang ◽  
Jin-Hyok Kim ◽  
Kee-Yong Ha ◽  
Dong-Ju Lim ◽  
Se-Il Suk

2020 ◽  
Author(s):  
Yiwei Zhao ◽  
Wubo Liu ◽  
Suomao Yuan ◽  
Yonghao Tian ◽  
Xinyu Liu

Abstract Background In the present study, we reported the clinical use of uniplanar cannulated pedicle screws for the correction of Lenke type 1 adolescent Idiopathic scoliosis (AIS), and its safety and clinical outcomes were also evaluated. Methods 68 patients with Lenke type 1 AIS were included, among which 38 patients were treated with uniplanar cannulated screws at the concave side of periapical levels and multiaxial screws at the other levels (group A). Moreover, the remaining 30 patients were treated with all multiaxial screws (group B). The preoperative and postoperative radiographic parameters of the Lenke type 1 AIS, axial vertebral rotation, and the safety of the pedicle screws were evaluated by X-rays and computed tomography (CT). Results Preoperative data was comparable between two groups. The postoperative proximal thoracic (PT) curve, main thoracic (MT) curve, thoracolumbar/lumbar (TL/L) curve, and apical vertebral rotation were significantly improved compared with the preoperative data. The coronal correction rates in group A and B were 83% and 81.9%, respectively (P > 0.05). The derotation rates in group A and B were 60.8% and 43.2%, respectively (P < 0.05). The rotation classification in the group A was also better compared with the group B. The misplacement rate in group A and B was 7.9% and 11.8%, respectively (P < 0.05), and the total misplacement rate on the concave side (11.4%) was higher than that of convex side (8.4%). The lateral perforation was found at the concave side, while the medial perforation was found at the convex side. On the concave side, the misplacement rate in group A and B was 9.7% and 12.3%, respectively (P < 0.05). The grades 2 and 3 perforations were three (3.5%) in the group A and eight (8.2%) in the group B (P < 0.05). On the convex side, the misplacement rate in group A and B was 5.9% and 11.1%, respectively (P < 0.05). The grades 2 and 3 perforations were one (0.9%) in the group A and four (4.4%) in the group B (P < 0.05). Conclusion Collectively, uniplanar cannulated pedicle screws could effectively increase the accuracy of pedicle screws and facilitate the derotation of the apical vertebra compared with the multiaxial pedicle screws. Trial registration retrospectively registered


Author(s):  
X Wang ◽  
CE Aubin ◽  
RM Schwend

The objective was to assess deformity correction and bone-screw force associated respectively with concave manipulation first, convex manipulation first, and different differential rod contouring configurations. Instrumentation scenarios were computationally simulated for 10 AIS cases with mean thoracic Cobb angle (MT) of 54±8°, apical vertebral rotation (AVR) of 19±2° and thoracic kyphosis of 21±9°. Instrumentations with major correction maneuvers using the concave side rod were first simulated; instrumentations with major correction maneuvers using the convex side rod were then simulated. Simulated correction maneuvers were concave/convex rod translation followed by apical vertebral derotation and then convex/concave rod translation. There were no significant differences in deformity corrections and bone-screw forces between concave rod translation first and convex rod translation first with differential rod contouring. Increasing differential rod contouring angle and concave rod diameter improved AVR correction and increased the TK and bone-screw forces; the effect on the MT Cobb angle was not clinically significant.


Sign in / Sign up

Export Citation Format

Share Document