Reliability of the axial vertebral rotation measurements of adolescent idiopathic scoliosis using the center of lamina method on ultrasound images: in vitro and in vivo study

2016 ◽  
Vol 25 (10) ◽  
pp. 3265-3273 ◽  
Author(s):  
Wei Chen ◽  
Lawrence H. Le ◽  
Edmond H. M. Lou
2020 ◽  
pp. 219256822094883
Author(s):  
Kristóf József ◽  
Ádám Tibor Schlégl ◽  
Máté Burkus ◽  
István Márkus ◽  
Ian O’Sullivan ◽  
...  

Study Design: Retrospective cross-sectional study. Objectives: It is generally believed that the apical vertebra has the largest axial rotation in adolescent idiopathic scoliosis. We investigated the relationship between apical axial vertebral rotation (apicalAVR) and maximal axial vertebral rotation (maxAVR) in both major and minor curves using biplanar stereo-imaging. Methods: EOS 2D/3D biplanar radiograph images were collected from 332 patients with adolescent idiopathic scoliosis (Cobb angle range 10°-122°, mean age 14.7 years). Based on the X-ray images, with the help of 3D full spine reconstructions Cobb angle, curvature level, apicalAVR and maxAVR were determined. These parameters were also determined for minor curves in Lenke 2, 3, 4, 6 type patients. Maximal thoracic rotation and maximal thoracolumbar/lumbar rotation were calculated. Statistical analysis was performed with descriptive statistics, Shapiro-Wilk test, and Wilcoxon signed-rank test. Results: The apical vertebrae were the most rotated vertebra in only 40.4% of the major curves, and 31.7% in minor curves. MaxAVR significantly exceeded apicalAVR values in the major curves ( P < .001) as well as in minor curves ( P < .001). The 2 parameters differed significantly in each severity group and Lenke type. Conclusions: The apical vertebrae were not the most rotated vertebra in more than half of cases investigated indicating that apicalAVR and maxAVR should be considered as 2 distinct parameters, of which maxAVR fully describes the axial dimension of scoliosis. Furthermore, the substitution of maxAVR for the apicalAVR should be especially avoided in double and triple curves, as the apical vertebra was even less commonly the most rotated in minor curves.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
E. J. Sánchez-Barceló ◽  
M. D. Mediavilla ◽  
D. X. Tan ◽  
R. J. Reiter

The objective of this paper was to analyze the data supporting the possible role of melatonin on bone metabolism and its repercussion in the etiology and treatment of bone pathologies such as the osteoporosis and the adolescent idiopathic scoliosis (AIS). Melatonin may prevent bone degradation and promote bone formation through mechanisms involving both melatonin receptor-mediated and receptor-independent actions. The three principal mechanisms of melatonin effects on bone function could be: (a) the promotion of the osteoblast differentiation and activity; (b) an increase in the osteoprotegerin expression by osteoblasts, thereby preventing the differentiation of osteoclasts; (c) scavenging of free radicals generated by osteoclast activity and responsible for bone resorption. A variety of in vitro and in vivo experimental studies, although with some controversial results, point toward a possible role of melatonin deficits in the etiology of osteoporosis and AIS and open a new field related to the possible therapeutic use of melatonin in these bone diseases.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Aohua Zhang ◽  
Min Pan ◽  
Long Meng ◽  
Fengshu Zhang ◽  
Wei Zhou ◽  
...  

Abstract Background The non-invasive quantitative evaluation of left ventricle (LV) function plays a critical role in clinical cardiology. This study proposes a novel ultrasonic biomechanics method by integrating both LV vortex and wall motion to fully assess and understand the LV structure and function. The purpose of this study was to validate the ultrasonic biomechanics method as a quantifiable approach to evaluate LV function. Methods Firstly, B-mode ultrasound images were acquired and processed, which were utilized to implement parameters for quantifying the LV vortex and wall motion respectively. Next, the parameters were compared in polyvinyl alcohol cryogen (PVA) phantoms with different degree of stiffness corresponding to different freezing and thawing cycles in vitro. Finally, the parameters were computed in vivo during one cardiac cycle to assess the LV function in normal and abnormal subjects in vivo. Results In vitro study, the velocity field of PVA phantom differed with stiffness (varied elasticity modulus). The peak of strain for wall motion decreases with the increase of elasticity modulus, and periodically changed values. Statistical analysis for parameters of vortex dynamics (energy dissipation index, DI; kinetic energy fluctuations, KEF; relative strength, RS; and vorticity, W) based on different elasticity (E) of phantom depicted the good viability of this algorithm. In vivo study, the results confirmed that subjects with LV dysfunction had lower vorticity and strain (S) compared to the normal group. Conclusion Ultrasonic biomechanics method can obtain the vortex and wall motion of left ventricle. The method may have potential clinical value in evaluation of LV dysfunction.


2020 ◽  
Vol 21 (15) ◽  
pp. 1688-1698
Author(s):  
Germeen N.S. Girgis

Purpose: The work was performed to investigate the feasibility of preparing ocular inserts loaded with Poly-ε-Caprolactone (PCL) nanoparticles as a sustained ocular delivery system. Methods: First, Atorvastatin Calcium-Poly-ε-Caprolactone (ATC-PCL) nanoparticles were prepared and characterized. Then, the optimized nanoparticles were loaded within inserts formulated with Methylcellulose (MC) and Polyvinyl Alcohol (PVA) by a solvent casting technique and evaluated physically, for in-vitro drug release profile. Finally, an in-vivo study was performed on the selected formulation to prove non-irritability and sustained ocular anti-inflammatory efficacy compared with free drug-loaded ocuserts. Results: The results revealed (ATC-PCL) nanoparticles prepared with 0.5% pluronic F127 were optimized with 181.72±3.6 nm particle size, 0.12±0.02 (PDI) analysis, -27.4± 0.69 mV zeta potential and 62.41%±4.7% entrapment efficiency. Nanoparticles loaded ocuserts manifested compatibility between drug and formulation polymers. Moreover, formulations complied with average weight 0.055±0.002 to 0.143±0.023 mg, and accepted pH. ATC-PCL nanoparticles loaded inserts prepared by 5% MC showed more sustained, prolonged in-vitro release over 24h. In-vivo study emphasized non-irritability, ocular anti-inflammatory effectiveness represented by smaller lid closure scores, and statistically significant lowering in PMN count after 3h. Conclusion: These findings proposed a possibly simple, new and affordable price technique to prepare promising (ATC-PCL) nanoparticles loaded inserts to achieve sustained release with prolonged antiinflammatory efficacy.


Sign in / Sign up

Export Citation Format

Share Document