Improved Accuracy of Minimally Invasive Transpedicular Screw Placement in the Lumbar Spine With 3-Dimensional Stereotactic Image Guidance

2015 ◽  
Vol 28 (9) ◽  
pp. 324-329 ◽  
Author(s):  
Austin C. Bourgeois ◽  
Austin R. Faulkner ◽  
Yong C. Bradley ◽  
Alexander S. Pasciak ◽  
Patrick B. Barlow ◽  
...  
Spine ◽  
1988 ◽  
Vol 13 (1) ◽  
pp. 27-32 ◽  
Author(s):  
MARTIN H. KRAG ◽  
DONALD L. WEAVER ◽  
BRUCE D. BEYNNON ◽  
LARRY D. HAUGH

Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Guang-Ting Cong ◽  
Avani Vaishnav ◽  
Joseph Barbera ◽  
Hiroshi Kumagai ◽  
James Dowdell ◽  
...  

Abstract INTRODUCTION Posterior spinal instrumentation for fusion using intraoperative computed tomography (CT) navigation is gaining traction as an alternative to the conventional two-dimensional fluoroscopic-guided approach to percutaneous pedicle screw placement. However, few studies to date have directly compared outcomes of these 2 minimally invasive instrumentation methods. METHODS A consecutive cohort of patients undergoing primary percutaneous posterior lumbar spine instrumentation for spine fusion was retrospectively reviewed. Revision surgeries or cases converted to open were excluded. Accuracy of screw placement was assessed using a postoperative CT scan with blinding to the surgical methods used. The Gertzbein-Robbins classification was used to grade cortical breach: Grade 0 (<0 mm cortical breach), Grade I (<2 mm), Grade II (2-4 mm), Grade III (4-6 mm), and Grade IV (>6 mm). RESULTS CT navigation was found to significantly improve accuracy of screw placement (P < .022). There was significantly more facet violation of the unfused level in the fluoroscopy group vs the CT group (9% vs 0.5%; P < .0001). There was also a higher proportion of poor screw placement in the fluoroscopy group (10.1% vs 3.6%). No statistical difference was found in the rate of tip breach, inferomedial breach, or lateral breach. Regression analysis showed that fluoroscopy had twice the odds of incurring poor screw placement as compared to CT navigation. CONCLUSION This radiographic study comparing screw placement in minimally invasive fluoroscopy- vs CT navigation-guided lumbar spine instrumentation provides evidence that CT navigation significantly improves accuracy of screw placement, especially in optimizing the screw trajectory so as to avoid facet violation. Long-term follow-up studies should be performed to ascertain whether this difference can contribute to an improvement in clinical outcomes.


2013 ◽  
Vol 35 (2) ◽  
pp. E12 ◽  
Author(s):  
Ziev B. Moses ◽  
Rory R. Mayer ◽  
Benjamin A. Strickland ◽  
Ryan M. Kretzer ◽  
Jean-Paul Wolinsky ◽  
...  

Object Parallel advancements in image guidance technology and minimal access techniques continue to push the frontiers of minimally invasive spine surgery (MISS). While traditional intraoperative imaging remains widely used, newer platforms, such as 3D-fluoroscopy, cone-beam CT, and intraoperative CT/MRI, have enabled safer, more accurate instrumentation placement with less radiation exposure to the surgeon. The goal of this work is to provide a review of the current uses of advanced image guidance in MISS. Methods The authors searched PubMed for relevant articles concerning MISS, with particular attention to the use of image-guidance platforms. Pertinent studies published in English were further compiled and characterized into relevant analyses of MISS of the cervical, thoracic, and lumbosacral regions. Results Fifty-two studies were included for review. These describe the use of the iso-C system for 3D navigation during C1–2 transarticular screw placement, the use of endoscopic techniques in the cervical spine, and the role of navigation guidance at the occipital-cervical junction. The authors discuss the evolving literature concerning neuronavigation during pedicle screw placement in the thoracic and lumbar spine in the setting of infection, trauma, and deformity surgery and review the use of image guidance in transsacral approaches. Conclusions Refinements in image-guidance technologies and minimal access techniques have converged on spinal pathology, affording patients the ability to undergo safe, accurate operations without the associated morbidities of conventional approaches. While percutaneous transpedicular screw placement is among the most common procedures to benefit from navigation, other areas of spine surgery can benefit from advances in neuronavigation and further growth in the field of image-guided MISS is anticipated.


2015 ◽  
Vol 11 (4) ◽  
pp. 530-536 ◽  
Author(s):  
Joshua M Beckman ◽  
Gisela Murray ◽  
Konrad Bach ◽  
Armen Deukmedjian ◽  
Juan S Uribe

Abstract BACKGROUND Multiple methods for minimally invasive (MIS) thoracic and lumbar pedicle screw placement exist. The guide wire is almost universally used for most insertion techniques; however, its use is not without complication and potentially prolongs surgical procedures. OBJECTIVE To evaluate the safety of percutaneous MIS guide wire-less pedicle screw placement in the thoracic and lumbar spine at a single institution over a 3-year experience. METHODS Forty-one patients who underwent posterior instrumentation with 110 transpedicular MIS thoracic and lumbar screws by a single surgeon from 2011 to 2014 were analyzed. The mean age was 63 years at the time of surgery. Etiological diagnoses were adult spinal deformity, trauma, spondylosis/spondylolisthesis, and other spinal diseases. Pedicle screws were inserted with the use of a guide wire-free technique in which anatomy-specific entry sites and fluoroscopic landmarks were used to guide the surgeon. A square, sharp-tipped pedicle screw was carefully advanced under biplanar fluoroscopic image (anteroposterior and lateral) down the pedicle into the body. No tapping or any type of electromonitoring was performed. An independent spine surgeon using medical records and thoracic/lumbar computed tomography taken during the postoperative period reviewed all patients. RESULTS The number of the screws inserted at each level was as follows: total, 110; thoracic, 30; and lumbar, 80. All screws were evaluated by computed tomography to assess screw position. Seven screws (6.3%) were inserted with moderate cortical perforation, including 3 screws (2.7%) that violated the medial wall. There were no neurological, vascular, or visceral complications with up to 3 years of follow-up. CONCLUSION The percutaneous MIS guide wire-less technique of lumbar and thoracic pedicle screw placement performed using a biplanar fluoroscopic guidance in a stepwise, consistent manner is an accurate, safe, and reproducible method of insertion to treat a variety of spinal disorders.


2017 ◽  
Vol 42 (5) ◽  
pp. E11 ◽  
Author(s):  
Naureen Keric ◽  
Christian Doenitz ◽  
Amer Haj ◽  
Izabela Rachwal-Czyzewicz ◽  
Mirjam Renovanz ◽  
...  

ObjectiveRecent studies have investigated the role of spinal image guidance for pedicle screw placement. Many authors have observed an elevated placement accuracy and overall improvement of outcome measures. This study assessed a bi-institutional experience following introduction of the Renaissance miniature robot for spinal image guidance in Europe.MethodsThe medical records and radiographs of all patients who underwent robot-guided implantation of spinal instrumentation using the novel system (between October 2011 and March 2015 in Mainz and February 2014 and February 2016 in Regensburg) were reviewed to determine the efficacy and safety of the newly introduced robotic system. Screw position accuracy, complications, exposure durations to intraoperative radiation, and reoperation rate were assessed.ResultsOf the 413 surgeries that used robotic guidance, 406 were via a minimally invasive approach. In 7 cases the surgeon switched to conventional screw placement, using a midline approach, due to referencing problems. A total of 2067 screws were implanted using robotic guidance, and 1857 screws were evaluated by postoperative CT. Of the 1857 screws, 1799 (96.9%) were classified as having an acceptable or good position, whereas 38 screws (2%) showed deviations of 3–6 mm and 20 screws (1.1%) had deviations > 6 mm. Nine misplaced screws, implanted in 7 patients, required revision surgery, yielding a screw revision rate of 0.48% of the screws and 7 of 406 (1.7%) of the patients. The mean ± SD per-patient intraoperative fluoroscopy exposure was 114.4 (± 72.5) seconds for 5.1 screws on average and any further procedure required. Perioperative and direct postoperative complications included hemorrhage (2 patients, 0.49%) and wound infections necessitating surgical revision (20 patients, 4.9%).ConclusionsThe hexapod miniature robotic device proved to be a safe and robust instrument in all situations, including those in which patients were treated on an emergency basis. Placement accuracy was high; peri- and early postoperative complication rates were found to be lower than rates published in other series of percutaneous screw placement techniques. Intraoperative radiation exposure was found to be comparable to published values for other minimally invasive and conventional approaches.


Author(s):  
Apipop Kritsaneephaiboon ◽  
Watit Wuttimanop ◽  
Surasak Jitprapaikulsarn ◽  
Pornpanit Dissaneewate ◽  
Chulin Chewakidakarn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document