High-salt diet increases plasma adiponectin levels independent of blood pressure in hypertensive rats: the role of the renin–angiotensin–aldosterone system

2010 ◽  
Vol 28 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Yehuda Kamari ◽  
Nir Shimoni ◽  
Faina Koren ◽  
Edna Peleg ◽  
Yehonatan Sharabi ◽  
...  
1973 ◽  
Vol 45 (s1) ◽  
pp. 135s-139s ◽  
Author(s):  
G. Bianchi ◽  
U. Fox ◽  
G. F. Di Francesco ◽  
U. Bardi ◽  
Maria Radice

1. Spontaneously hypertensive and normotensive rats were selectively bred from a single Wistar strain. 2. Cross-transplantation of kidneys from hypertensive to normotensive rats and vice versa was performed, the sole remaining kidney of the recipient later being excised. Kidneys were also transplanted from normotensive donors into normotensive recipients and from hypertensive to hypertensive. 3. Normotensive rats receiving a kidney from either a hypertensive or normotensive donor showed unchanged blood pressure on normal salt diet. High-salt diet produced a greater rise in recipients of hypertensive than in recipients of normotensive kidneys. 4. Normotensive kidneys reduced the blood pressure of hypertensive recipients, but transplanted hypertensive kidneys had no such effect.


2019 ◽  
Vol 20 (14) ◽  
pp. 3495 ◽  
Author(s):  
Yanling Yan ◽  
Jiayan Wang ◽  
Muhammad A. Chaudhry ◽  
Ying Nie ◽  
Shuyan Sun ◽  
...  

We have demonstrated that Na/K-ATPase acts as a receptor for reactive oxygen species (ROS), regulating renal Na+ handling and blood pressure. TALLYHO/JngJ (TH) mice are believed to mimic the state of obesity in humans with a polygenic background of type 2 diabetes. This present work is to investigate the role of Na/K-ATPase signaling in TH mice, focusing on susceptibility to hypertension due to chronic excess salt ingestion. Age-matched male TH and the control C57BL/6J (B6) mice were fed either normal diet or high salt diet (HS: 2, 4, and 8% NaCl) to construct the renal function curve. Na/K-ATPase signaling including c-Src and ERK1/2 phosphorylation, as well as protein carbonylation (a commonly used marker for enhanced ROS production), were assessed in the kidney cortex tissues by Western blot. Urinary and plasma Na+ levels were measured by flame photometry. When compared to B6 mice, TH mice developed salt-sensitive hypertension and responded to a high salt diet with a significant rise in systolic blood pressure indicative of a blunted pressure-natriuresis relationship. These findings were evidenced by a decrease in total and fractional Na+ excretion and a right-shifted renal function curve with a reduced slope. This salt-sensitive hypertension correlated with changes in the Na/K-ATPase signaling. Specifically, Na/K-ATPase signaling was not able to be stimulated by HS due to the activated baseline protein carbonylation, phosphorylation of c-Src and ERK1/2. These findings support the emerging view that Na/K-ATPase signaling contributes to metabolic disease and suggest that malfunction of the Na/K-ATPase signaling may promote the development of salt-sensitive hypertension in obesity. The increased basal level of renal Na/K-ATPase-dependent redox signaling may be responsible for the development of salt-sensitive hypertension in polygenic obese TH mice.


1998 ◽  
Vol 274 (5) ◽  
pp. H1423-H1428 ◽  
Author(s):  
Chohreh Partovian ◽  
Athanase Benetos ◽  
Jean-Pierre Pommiès ◽  
Willy Mischler ◽  
Michel E. Safar

Bradykinin activity could explain the blood pressure increase during NaCl loading in hypertensive animals, but its contribution on vascular structure was not evaluated. We determined cardiac mass and large artery structure after a chronic, 4-mo, high-salt diet in combination with bradykinin B2-receptor blockade by Hoe-140. Four-week-old rats were divided into eight groups according to strain [spontaneously hypertensive rats (SHR) vs. Wistar-Kyoto (WKY) rats], diet (0.4 vs. 7% NaCl), and treatment (Hoe-140 vs. placebo). In WKY rats, a high-salt diet significantly increased intra-arterial blood pressure with minor changes in arterial structure independently of Hoe-140. In SHR, blood pressure remained stable but 1) the high-salt diet was significantly associated with cardiovascular hypertrophy and increased arterial elastin and collagen, and 2) Hoe-140 alone induced carotid hypertrophy. A high-salt diet plus Hoe-140 acted synergistically on carotid hypertrophy and elastin content in SHR, suggesting that the role of endogenous bradykinin on arterial structure was amplified in the presence of a high-salt diet.


2020 ◽  
Vol 21 (6) ◽  
pp. 2248 ◽  
Author(s):  
Abu Sufiun ◽  
Asadur Rahman ◽  
Kazi Rafiq ◽  
Yoshihide Fujisawa ◽  
Daisuke Nakano ◽  
...  

The aim of the present study is to investigate whether a disruption of the dipping pattern of blood pressure (BP) is associated with the progression of renal injury in Dahl salt-sensitive (DSS) hypertensive rats. Seven-week-old DSS rats were fed a high salt diet (HSD; 8% NaCl) for 10 weeks, followed by a transition to a normal salt diet (NSD; 0.3% NaCl) for 4 weeks. At baseline, NSD-fed DSS rats showed a dipper-type circadian rhythm of BP. By contrast, HSD for 5 days caused a significant increase in the difference between the active and inactive periods of BP with an extreme dipper type of BP, while proteinuria and renal tissue injury were not observed. Interestingly, HSD feeding for 10 weeks developed hypertension with a non-dipper pattern of BP, which was associated with obvious proteinuria and renal tissue injury. Four weeks after switching to an NSD, BP and proteinuria were significantly decreased, and the BP circadian rhythm returned to the normal dipper pattern. These data suggest that the non-dipper pattern of BP is associated with the progression of renal injury during the development of salt-dependent hypertension.


2017 ◽  
Vol 16 (3) ◽  
pp. 62-69
Author(s):  
A. G. Kucher ◽  
O. N. Beresneva ◽  
M. M. Parastaeva ◽  
G. T. Ivanova ◽  
M. I. Zarajsky ◽  
...  

Objective. To study the influence of diet containing high or normal NaCl on the arterial blood pressure level (BP), heart rate (HR), processes of myocardial remodeling and of nuclear transcription factor kB (NFkB) expression in myocardium and kidney in spontaneously hypertensive rats (SHR). Design and methods. The two groups of male SHRs received a diet with normal (0.34 %; n = 24, control) and high content of NaCl (8.0 %; n = 25; experimental group) for 2 months. Blood pressure (BP), heart rate (HR), cardiac left ventricular mass index (LVMI), left (LKMI) and right (RKMI) kidney mass indexes were determined. Morphological study of myocardium (light microscopy), including quantitative morphometry was carried out. In part of animals the relative level of NFkB gene expression in heart and kidney tissues was studied. Results and discussion. In rats fed a diet containing 8 % NaCl BP and HR did not change significantly compared with the control. However, LVMI, RKMI, LKMI were significantly higher in high-salt diet-treated animals than in controls. The heart of high-salt diet-treated animals developed the changes leading to hypertrophy and possibly hyperplasia of cardiomyocytes. In these animals, perivascular fibrosis, significant increase of arterial wall thickness and vacuolization of smooth muscle cells were revealed. The relative level of NFKB gene expression in rats receiving high-salt diet was 33-fold higher in myocardium and 12-fold higher in kidneys than in animals fed a normal salt diet. Conclusion. The high-salt diet is not necessarily accompanied by an increase in blood pressure, but causes myocardial remodeling, apparently due to direct «toxic» effects. The negative impact on the cardiovascular system of high-salt diet is in part mediated through NFkB-associated signaling pathways. Furthermore, high NaCl diet causes activation of NFkB in the kidneys.


1996 ◽  
Vol 271 (4) ◽  
pp. F824-F830 ◽  
Author(s):  
C. Wang ◽  
C. Chao ◽  
L. M. Chen ◽  
L. Chao ◽  
J. Chao

Tissue kallikrein cleaves low-molecular-weight (low-M(r)) kininogen to produce the vasoactive kinin peptide. It has been suggested that hypertensive patients with low urinary kallikrein excretion may have a defect in sodium handling. In this study, we examined the effect of a high-salt diet on the expression of tissue kallikrein and kininogen genes in Dahl salt-sensitive rats (Dahl-SS), spontaneously hypertensive rats (SHR), and normotensive Sprague-Dawley rats (SD) by Northern and Western blot analysis and radioimmunoassay. Control and experimental groups received normal and high-salt diets containing 0.4% and 8% NaCl, respectively, for 6 wk. High-salt diet induced a significant time-dependent increase of blood pressure in both strains of hypertensive rats and a slight but significant increase of blood pressure in normotensive SD rats. Hepatic kininogen mRNA levels of both Dahl-SS and SHR on a high-salt diet increased 2.4-fold and 2.0-fold, respectively, while alpha 1-antitrypsin mRNA levels were not changed in rats receiving high-salt diet. Immunoreactive total kininogen and low-M(r) kininogen (58 kDa) levels in sera increased in response to high-salt diet in both strains of hypertensive rats. In SD rats, the low-M(r) kininogen level in sera was unaltered, whereas total kininogen increased in response to high-salt diet. Tissue kallikrein mRNAs in the kidney and salivary glands of Dahl-SS, SHR, and SD rats were reduced, whereas beta-actin mRNA was not altered by high-salt diet. Similarly, immunoreactive intrarenal kallikrein levels were reduced in these rats in response to high-salt diet. These studies show that increases in blood pressure after salt loading in Dahl-SS and SHR are accompanied by increases in low-M(r) kininogen. Tissue kallikrein gene expression in hypertensive Dahl-SS and SHR and normotensive SD rats is suppressed after salt loading. These findings show that reduced renal kallikrein expression and increased kininogen expression is regulated at the transcriptional level during salt loading.


2017 ◽  
Vol 313 (4) ◽  
pp. R425-R437 ◽  
Author(s):  
Bryan K. Becker ◽  
Amanda C. Feagans ◽  
Daian Chen ◽  
Malgorzata Kasztan ◽  
Chunhua Jin ◽  
...  

Hypertension is a prevalent pathology that increases risk for numerous cardiovascular diseases. Because the etiology of hypertension varies across patients, specific and effective therapeutic approaches are needed. The role of renal sympathetic nerves is established in numerous forms of hypertension, but their contribution to salt sensitivity and interaction with factors such as endothelin-1 are poorly understood. Rats deficient of functional ETB receptors (ETB-def) on all tissues except sympathetic nerves are hypertensive and exhibit salt-sensitive increases in blood pressure. We hypothesized that renal sympathetic nerves contribute to hypertension and salt sensitivity in ETB-def rats. The hypothesis was tested through bilateral renal sympathetic nerve denervation and measuring blood pressure during normal salt (0.49% NaCl) and high-salt (4.0% NaCl) diets. Denervation reduced mean arterial pressure in ETB-def rats compared with sham-operated controls by 12 ± 3 (SE) mmHg; however, denervation did not affect the increase in blood pressure after 2 wk of high-salt diet (+19 ± 3 vs. +16 ± 3 mmHg relative to normal salt diet; denervated vs. sham, respectively). Denervation reduced cardiac sympathetic-to-parasympathetic tone [low frequency-high frequency (LF/HF)] during normal salt diet and vasomotor LF/HF tone during high-salt diet in ETB-def rats. We conclude that the renal sympathetic nerves contribute to the hypertension but not to salt sensitivity of ETB-def rats.


Author(s):  
Dominique M Bovee ◽  
Estrellita Uijl ◽  
David Severs ◽  
Eloisa Rubio-Beltrán ◽  
Richard van Veghel ◽  
...  

Chronic kidney disease (CKD) contributes to hypertension, but the mechanisms are incompletely understood. To address this, we applied the 5/6th nephrectomy rat model to characterize hypertension and the response to dietary salt and renin-angiotensin inhibition. 5/6th nephrectomy caused low-renin, salt-sensitive hypertension with hyperkalemia and unsuppressed aldosterone. Compared to sham, 5/6Nx rats had lower NHE3, NKCC2, NCC, a-ENaC and Kir4.1, but higher SKG1, prostasin, g-ENaC, and Kir5.1. These differences correlated with plasma renin, aldosterone, and/or potassium. On a normal salt diet, adrenalectomy (0 ± 9 mmHg) and spironolactone (-11 ± 10 mmHg) prevented a progressive rise in blood pressure (10 ± 8 mmHg), and this was enhanced in combination with losartan (-41 ± 12 mmHg and -43 ± 9 mmHg). A high salt diet caused skin sodium and water accumulation and aggravated hypertension that could only be attenuated by spironolactone (-16 ± 7 mmHg) and in which the additive effect of losartan was lost. Spironolactone also increased natriuresis, reduced skin water accumulation and restored vasorelaxation. In summary, in the 5/6th nephrectomy rat CKD model, salt-sensitive hypertension develops with a selective increase in g-ENaC and despite appropriate transporter adaptations to low renin and hyperkalemia. With a normal salt diet, hypertension in 5/6th nephrectomy depends on angiotensin II and aldosterone, while a high salt diet causes more severe hypertension mediated through the mineralocorticoid receptor.


2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Débora Rothstein Ramos ◽  
Nauilo L. Costa ◽  
Ivone B. Oliveira ◽  
Karen L. Lopes ◽  
Joel C. Heimann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document