Oxidative stress with an activation of the renin–angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction

2010 ◽  
pp. 1 ◽  
Author(s):  
Min-A Yu ◽  
Laura G Sánchez-Lozada ◽  
Richard J Johnson ◽  
Duk-Hee Kang
2004 ◽  
Vol 287 (1) ◽  
pp. H216-H224 ◽  
Author(s):  
Yasuo Kansui ◽  
Koji Fujii ◽  
Keiichiro Nakamura ◽  
Kenichi Goto ◽  
Hideyuki Oniki ◽  
...  

Blockade of the renin-angiotensin system improves the impaired endothelium-dependent relaxations associated with hypertension and aging, partly through amelioration of endothelium-derived hyperpolarizing factor (EDHF)-mediated responses. Although the nature of EDHF is still controversial, recent studies have suggested the involvement of gap junctions in EDHF-mediated responses. Gap junctions consist of connexins (Cx), and we therefore tested whether the expression of Cx in vascular endothelial cells would be altered by hypertension and antihypertensive treatment. Spontaneously hypertensive rats (SHR) were treated with either the angiotensin II type 1 receptor antagonist candesartan or the combination of hydralazine and hydrochlorothiazide for 3 mo from 5 to 8 mo of age. Confocal laser scanning microscopy after immunofluorescent labeling with antibodies against Cx37, Cx40, and Cx43 revealed that the expression of Cx37 and Cx40 in endothelial cells of the mesenteric artery was significantly lower in SHR than in WKY. Treatment with candesartan, but not the combination of hydralazine and hydrochlorothiazide, significantly increased the expression of Cx37 and Cx40, although blood pressure decreased similarly. On the other hand, the expression of Cx43, though scarce and heterogeneous, was increased in SHR compared with WKY, and candesartan treatment lowered the expression of Cx43. These findings suggest that renin-angiotensin system blockade corrects the decreased expression of Cx37 and Cx40 in arterial endothelial cells of hypertensive rats, partly independently of blood pressure, whereas the expression of Cx43 changed in the opposite direction. It remains to be clarified whether these changes in Cx37 and Cx40 are related to endothelial function, particularly that attributable to EDHF.


PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e17437 ◽  
Author(s):  
Lai Ming Yung ◽  
Wing Tak Wong ◽  
Xiao Yu Tian ◽  
Fung Ping Leung ◽  
Lai Hang Yung ◽  
...  

Endocrine ◽  
2014 ◽  
Vol 48 (1) ◽  
pp. 135-142 ◽  
Author(s):  
Jun-xia Zhang ◽  
Yu-ping Zhang ◽  
Qi-nan Wu ◽  
Bing Chen

2019 ◽  
Vol 37 ◽  
pp. e91-e92
Author(s):  
B. de Becker ◽  
K. Zouaoui-Boudjeltia ◽  
P. van Antwerpen ◽  
C. Delporte ◽  
P. van de Borne

2019 ◽  
Vol 33 (12) ◽  
pp. 13334-13345 ◽  
Author(s):  
Jiyeon Ko ◽  
Hyun-Jung Kang ◽  
Dal-Ah Kim ◽  
Mi-Jin Kim ◽  
Eun-Sun Ryu ◽  
...  

2007 ◽  
Vol 293 (6) ◽  
pp. H3726-H3731 ◽  
Author(s):  
Donald D. Lund ◽  
Robert M. Brooks ◽  
Frank M. Faraci ◽  
Donald D. Heistad

Endotoxin [or lipopolysaccharide (LPS)] increases levels of superoxide in blood vessels and impairs vasomotor function. Angiotensin II plays an important role in the generation of superoxide in several disease states, including hypertension and heart failure. The goal of this study was to determine whether the activation of the renin-angiotensin system contributes to oxidative stress and endothelial dysfunction after endotoxin. We examined the effects of enalapril (an angiotensin-converting enzyme inhibitor) or L-158809 (an angiotensin receptor blocker) on increases of superoxide and vasomotor dysfunction in mice treated with LPS. C57BL/6 mice were treated with either enalapril (60 mg·kg−1·day−1) or L-158809 (30 mg·kg−1·day−1) for 4 days. After the third day, LPS (10–20 mg/kg) or vehicle was injected intraperitoneally, and one day later, vasomotor function of the aorta was examined in vitro. After precontraction with PGF2α, the maximal responses to sodium nitroprusside were similar in the aorta from normal and LPS-treated mice. In contrast, the relaxation to acetylcholine was impaired after LPS (54 ± 5% at 10−5, mean ± SE) compared with vessels treated with vehicle (88 ± 1%; P < 0.05). Enalapril improved ( P < 0.05) relaxation in response to acetylcholine to 81 ± 6% after LPS. L-158809 also improved relaxation in response to acetylcholine to 77 ± 4% after LPS. Superoxide (measured with lucigenin and hydroethidine) was increased ( P < 0.05) in aorta after LPS, and levels were reduced ( P < 0.05) following enalapril and L-158809. Thus, after LPS, enalapril and L-158809 reduce superoxide levels and improve relaxation to acetylcholine in the aorta. The findings suggest that activation of the renin-angiotensin system contributes importantly to oxidative stress and endothelial dysfunction after endotoxin.


Sign in / Sign up

Export Citation Format

Share Document