scholarly journals The Role of a Routine Bone Marrow Biopsy in Autoimmune Hemolytic Anemia for the Detection of an Underlying Lymphoproliferative Disorder

HemaSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. e674
Author(s):  
Ashlea Campbell ◽  
Bridget Podbury ◽  
Mimi Yue ◽  
Peter Mollee ◽  
Robert Bird ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
A. Lauro ◽  
M. Stanzani ◽  
C. Finelli ◽  
C. Zanfi ◽  
M. C. Morelli ◽  
...  

An adult male underwent a bowel transplant for tufting enteropathy, receiving alemtuzumab, tacrolimus, and steroids as immunosuppressants. Five years later, he developed an autoimmune hemolytic anemia (AIHA), anti-IgG positive, with reduced reticulocyte count, leukopenia, and thrombocytopenia with antiplatelet antibodies. After an unsuccessful initial treatment with high dose steroids, reduction in tacrolimus dose, and intravenous immunoglobulin (IVIG), a bone marrow biopsy revealed absence of erythroid maturation with precursor hyperplasia. The patient was switched to sirolimus and received four doses of rituximab plus two courses of plasmapheresis, which decreased his transfusion requirements. After a febrile episode one month later, the AIHA relapsed with corresponding decreases in platelet and leukocyte count: cyclosporine A (CsA) was started with a second course of rituximab and IVIG without response, even though repeat bone marrow biopsy did not reveal morphology correlated to an acquired pure red cell aplasia (APRCA). Considering the similarity in his clinical and laboratory findings to APRCA, alemtuzumab was added (three doses over a week) with CsA followed by steroids. The patient was eventually discharged transfusion-independent, with increasing hemoglobin (Hb) levels and normal platelet and leukocyte count. One year later he is still disease-free with functioning graft.


2021 ◽  
pp. 13-14
Author(s):  
Jessica Pereira ◽  
Aparna Pai

Lymphoproliferative disorders encompass a group of diseases with a highly variable clinical course. This is a case report of a patient who presented with haemolytic anemia initially and was subsequently diagnosed as a chronic lymphoproliferative disorder. He was treated with Rituximab to which he showed a favourable response.


2000 ◽  
Vol 191 (8) ◽  
pp. 1293-1302 ◽  
Author(s):  
Liliane Fossati-Jimack ◽  
Andreea Ioan-Facsinay ◽  
Luc Reininger ◽  
Yves Chicheportiche ◽  
Norihiko Watanabe ◽  
...  

Using three different Fcγ receptor (FcγR)-deficient mouse strains, we examined the induction of autoimmune hemolytic anemia by each of the four immunoglobulin (Ig)G isotype-switch variants of a 4C8 IgM antierythrocyte autoantibody and its relation to the contributions of the two FcγR, FcγRI, and FcγRIII, operative in the phagocytosis of opsonized particles. We found that the four IgG isotypes of this antibody displayed striking differences in pathogenicity, which were related to their respective capacity to interact in vivo with the two phagocytic FcγRs, defined as follows: IgG2a > IgG2b > IgG3/IgG1 for FcγRI, and IgG2a > IgG1 > IgG2b > IgG3 for FcγRIII. Accordingly, the IgG2a autoantibody exhibited the highest pathogenicity, ∼20–100-fold more potent than its IgG1 and IgG2b variants, respectively, while the IgG3 variant, which displays little interaction with these FcγRs, was not pathogenic at all. An unexpected critical role of the low-affinity FcγRIII was revealed by the use of two different IgG2a anti–red blood cell autoantibodies, which displayed a striking preferential utilization of FcγRIII, compared with the high-affinity FcγRI. This demonstration of the respective roles in vivo of four different IgG isotypes, and of two phagocytic FcγRs, in autoimmune hemolytic anemia highlights the major importance of the regulation of IgG isotype responses in autoantibody-mediated pathology and humoral immunity.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1704-1704
Author(s):  
Francesca Schieppati ◽  
Erin P. Demakos ◽  
Odchimar Rosalie-Reissig ◽  
Shyamala C. Navada ◽  
Lewis R. Silverman

Abstract Background: Myelodysplastic Syndrome (MDS) and Aplastic Anemia (AA) are often associated with clinical immune manifestations. An abnormal profile of the T-cell repertoire can be detected in these patients (pts) and is thought to play a role in bone marrow (BM) insufficiency. The presence of a co-existent large granular lymphocytic (LGL) clone may exacerbate cytopenias independent of the primary disease mechanism and offers another target for therapeutic intervention. Treatment for LGL proliferation is usually immunosuppressive therapy but there is no accepted standard of care. Methods: We explored the role of intravenous immunoglobulin (IVIG) as a treatment for immune-related cytopenias, i.e. Coombs negative (C-) hemolytic anemia, in a series of 12 consecutive pts with an LGL clonal proliferation documented by flow cytometry and TCR clonal rearrangements. Of the 12 cases, 9 had MDS (7 lower-risk), 1 AA with LGL liver involvement, and 1 primary myelofibrosis. One patient (pt) had suspected MDS. Overall response was assessed by MDS IWG criteria 2006. We defined a hemolysis response (HLR) as complete normalization (CR) or, a greater than 50% improvement (PR) in deviation from normal values of LDH, reticulocytes, indirect bilirubin and haptoglobin. Duration of HLR was defined as the time from onset of HLR to the time of resumption of hemolysis and loss of effect of IVIG. Results: All pts were treated with IVIG administered at a dose of 500mg/kg of IVIG once per week, in repeated cycles, with a duration ranging from 1-4 week(s) per cycle. Clinical characteristics (Table 1): M/F ratio 10/2; median age 69. Ten pts had a CD3+ T-LGL and 2 had a CD3-/CD16+/CD56+ NK-LGL circulating clone. Karyotype abnormalities were non-specific; 8 pts had 1-3+ reticulin BM fibrosis; 4 had mutations in RNA-splicing genes: SF3B1 (2); SETBP1 (1); SRSF2 (1). Ten pts were evaluable for response: 8 pts responded (ORR 80%): Hematological improvement (HI-erythroid) 8/8 (100%); a hemolysis CR (HLR-CR) occurred in 7 (87.5%) and hemolysis PR (HLR-PR) in 1 pt (12.5%). Median number of cycles, follow up, and duration of treatment were 16, 21.5 and 9.5 months (mo), respectively. The HLR-CR was durable and prolonged in 3/8 (38%) pts; 2 of these 3 pts (67%) did not require maintenance IVIG. Relapse from HLR occurred in 4, during infection or chemotherapy, but the response returned to the original level by shortening the intervals between administration of IVIG. One pt had relapsed after an initial response and then became refractory to IVIG. In follow up at month 38, 75% of pts were still responding to treatment, and 1 pt was still in remission after 46 mo. In 4 of 6 pts, corticosteroid treatment was discontinued and no longer required for chronic hemolysis, with general improvement of steroid related symptoms. Some patients had been on steroids maintenance for periods ranging from months to years. Response was more durable with continuous rather than sporadic dosing. Adverse events were not specific: 1 pt with self-limited isolated palpitations; 1 pt with hypertension not requiring intervention. Conclusions: Treatment with IVIG of immune cytopenias associated with LGL clones and BMF yields durable responses in 80% of pts. IVIG, especially at high concentrations, may enhance apoptosis, suppress proliferation of T-cells and induce immune-regulation. Given the relative rarity of LGL clones in MDS, further investigational studies will help define the role of IVIG and clarify the mechanism of action in this group of pts with MDS and BMF associated with LGL clones. Table 1. Variable Observed % Symptomatic anemia (fatigue, SOB) 9/12 75 B symptoms (recurrent fever) 2/12 16.6 Infections (bacteremia Campylobacter with migratory arthritis and dermatitis; cellulitis bacteremia S. epidermidis and osteomyelitis) 2/12 16.6 Skin lesions (leg focal ulceration and dermal fibrosis) 1/12 8.3 Splenomegaly 7/12 58.3 Hepatomegaly 2/12 16.6 Adenopathy (mediastinal) 1/12 8.3 Neuropathy 2/12 16.6 Hematologic disorders 11/12 91.6 Myelodysplastic syndrome 9/12 75 Severe aplastic anemia 1/12 8.3 Myeloproliferative neoplasm (PMF) 1/12 8.3 Lymphoproliferative neoplasm (FL+MDS) 1/12 8.3 Hemolytic anemia 11/12 91.6 Solid tumors (anal, squamous cell; breast ca) 2/12 16.6 Autoimmune disorders 7/12 58.3 ITP 3/7 42.8 Ulcerative colitis 1/7 14.3 Pernicious anemia 1/7 14.3 Systemic lupus erythematosus 1/7 14.3 Immune pancreatitis 1/7 14.3 MGUS 4/12 33.3 Disclosures Off Label Use: IVIG.


2010 ◽  
Vol 28 (15_suppl) ◽  
pp. 8144-8144 ◽  
Author(s):  
T. M. Mark ◽  
A. Koirala ◽  
R. N. Pearse ◽  
F. Zafar ◽  
D. Jayabalan ◽  
...  

2012 ◽  
Vol 40 (12) ◽  
pp. 994-1004.e4 ◽  
Author(s):  
Lin Xu ◽  
Tenglong Zhang ◽  
Zhongmin Liu ◽  
Qinchuan Li ◽  
Zengguang Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document