Mechanical Circulatory Support: Heart Failure Therapy “in Motion”

Author(s):  
Stephan M. Ensminger ◽  
Gino Gerosa ◽  
Jan F. Gummert ◽  
Volkmar Falk

Because the first generation of pulsatile-flow devices was primarily used to bridge the sickest patients to transplantation (bridge-to-transplant therapy), the current generation of continuous-flow ventricular assist devices qualifies for destination therapy for patients with advanced heart failure who are ineligible for transplantation. The first-generation devices were associated with frequent adverse events, limited mechanical durability, and patient discomfort due device size. In contrast, second-generation continuous-flow devices are smaller, more quiet, and durable, thus resulting in less complications and significantly improved survival rates. Heart transplantation remains an option for a limited number of patients only, and this fact has also triggered the discussion about the optimal timing for device implantation. The increasing use of continuous-flow devices has resulted in new challenges, such as adverse events during long-term support, and high hospital readmission rates. In addition, there are a number of device-related complications including mechanical problems such as device thrombosis, percutaneous driveline damage, as well as conditions such as hemolysis, infection, and cerebrovascular accidents. This review provides an overview of the evolution of mechanical circulatory support systems from bridge to transplantation to destination therapy including technological advances and clinical improvements in long-term patient survival and quality of life. In addition, recent changes in device implant strategies and current trials are reviewed and discussed. A brief glimpse into the future of mechanical circulatory support therapy will summarize the innovations that may soon enter clinical practice.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Ali A. Valika ◽  
William Cotts

Left ventricular assist devices as long-term mechanical circulatory support are increasingly utilized as an option for medically refractory advanced heart failure. Rapid advances in this field, from pulsatile paracorporeal flow pumps to now more advanced intracorporeal continuous flow devices, have led to more wide spread use of device therapy. Several trials have now confirmed the survival benefits of ventricular assist devices, not only as a method for bridging patients waiting on the transplant list, but also as an evolving paradigm of destination therapy. Significant improvements in quality of life and functional status have been reported in patients receiving these devices. Survival outcomes with this therapy continue to improve, and long term durability of newer generation devices remains yet to be discerned. Comparative data to heart transplantation remains scarce. This paper will focus on the historical development of ventricular assist device therapy for advanced heart failure, review major trials of destination therapy, and look at comparative literature in the modern era to cardiac transplantation.


2017 ◽  
Author(s):  
Charles C. Hill ◽  
Lindsay Raleigh

Mechanical circulatory support (MCS) involves the use of intra-aortic balloon pump (IABP), short-term percutaneous ventricular assist devices, long-term surgically implanted continuous-flow ventricular assist devices (cf-LVADs), and extracorporeal membrane oxygenation (ECMO) for the treatment of acute and chronic heart failure and cardiogenic shock. IABP is increasingly recognized as an important adjunct in the postoperative treatment arsenal for those patients with severely reduced left ventricular systolic function. Short-term percutaneous options for the treatment of acute right and left heart failure include both the Impella and Tandem Heart, whereas the Centrimag is often used in the surgical setting for acute cardiogenic shock and heart failure. Long-term surgical MCS options include the total artificial heart and the cf-LVADs HeartWare and Heartmate II. ECMO is frequently used for the treatment of acute cardiogenic shock and may be placed peripherally via a percutaneous approach or with central cannulation. ECMO is also increasingly used in the setting of acute cardiac life support, known as extracorporeal life support. Key words: cardiac critical care, extracorporeal membrane oxygenation, long-term ventricular assist device, mechanical circulatory support, short-term ventricular assist device 


Author(s):  
Trevor A. Snyder ◽  
Phillip Coghill ◽  
Kooroush Azartash-Namin ◽  
Jingchun Wu ◽  
J. Ryan Stanfield ◽  
...  

While the use of pulsatile- and continuous-flow ventricular assist devices (VADs) has become widely accepted as an acceptable treatment for end-stage heart failure in adults over the last three decades, the technology development for pediatric-specific patients is lagging behind that of adult devices. Only one pulsatile-flow VAD has been approved for use in pediatric patients in the U.S., just five years ago [1]. One continuous-flow device was approved specific to this population under Humanitarian Device Exemption (HDE), but is not in clinical use today [2]. As continuous-flow rotary blood pumps (RBPs) have become commonplace for mechanical circulatory support (MCS) in adults due to smaller size and greater reliability, significant resources have gone into the development of RBPs for pediatric use [3]. Further, RBPs designed for adult MCS have been used off-label in pediatric patients [4]. Development of an implantable device specific to a pediatric population includes challenges of anatomic placement and fixation. We have developed a RBP for adult MCS specific to right heart failure using computational fluid dynamics (CFD) and flow visualization [5]. The miniaturized device includes a rotating impeller and a vaned-diffuser in a 7 mm axial hydraulic diameter. As seen in Figure 1, the hydrodynamic characteristics suitable for a right-VAD (RVAD) may also be suitable for pediatric patients. Currently, the only approved device is placed extracorporeal due to size constraints in the intended population [1]. This report shows results of computational simulations for anatomic fit and fluid flow studies of our device geometry in pediatric patients.


2017 ◽  
Author(s):  
Charles C. Hill ◽  
Lindsay Raleigh

Mechanical circulatory support (MCS) involves the use of intra-aortic balloon pump (IABP), short-term percutaneous ventricular assist devices, long-term surgically implanted continuous-flow ventricular assist devices (cf-LVADs), and extracorporeal membrane oxygenation (ECMO) for the treatment of acute and chronic heart failure and cardiogenic shock. IABP is increasingly recognized as an important adjunct in the postoperative treatment arsenal for those patients with severely reduced left ventricular systolic function. Short-term percutaneous options for the treatment of acute right and left heart failure include both the Impella and Tandem Heart, whereas the Centrimag is often used in the surgical setting for acute cardiogenic shock and heart failure. Long-term surgical MCS options include the total artificial heart and the cf-LVADs HeartWare and Heartmate II. ECMO is frequently used for the treatment of acute cardiogenic shock and may be placed peripherally via a percutaneous approach or with central cannulation. ECMO is also increasingly used in the setting of acute cardiac life support, known as extracorporeal life support. Key words: cardiac critical care, extracorporeal membrane oxygenation, long-term ventricular assist device, mechanical circulatory support, short-term ventricular assist device 


2019 ◽  
Vol 56 (6) ◽  
pp. 1037-1045 ◽  
Author(s):  
Juliane Vierecke ◽  
Brigitta Gahl ◽  
Theo M M H de By ◽  
Herwig Antretter ◽  
Friedhelm Beyersdorf ◽  
...  

Abstract OBJECTIVES The purpose of this study was to describe pre- and postoperative data from the EUROMACS registry with regard to indications, for and survival and complication rates of patients with primary continuous flow and pulsatile biventricular long-term assist devices (BiVADs) versus total artificial hearts (TAHs) or left ventricular assist devices (LVADs) + short-term right ventricular assist device (RVAD) implants. METHODS We investigated patients who received implants between 1 January 2011 and 21 October 2017. Clinical baseline information about comorbidities, laboratory results, medical and device therapies and echocardiographic, haemodynamic and right ventricle (RV) parameters were evaluated along with the rates of deaths and complications. RESULTS A total of 413 of 3282 patients (12.5%) needed a biventricular pump. We investigated 37 long-term BiVADs, 342 LVAD + short-term RVAD implants and 34 TAHs. Minor differences were found in the baseline characteristics of our population, which had an overall high morbidity profile. The 1-year survival rate was 55% for patients with a continuous flow BiVAD; 52% for patients with an LVAD + short-term RVAD; 37% for patients with pulsatile BiVADs; and 36% for patients with a TAH. No statistical difference was observed among the groups. Over 50% of patients with BiVAD support were classified as INTERMACS profiles 1 and 2. The percent of patients with ambulatory heart failure (INTERMACS 4‒7) undergoing BiVAD implants was modest at <15%. No patients with a pulsatile BiVAD (n = 15) or a TAH (n = 34) were implanted as destination therapy, but 27% of the patients with continuous flow BiVADs (n = 6) and 23% of the patients with LVAD + short-term RVAD (n = 342) were implanted as ‘destination’. The adverse events profile remained high, with no significant difference among pump types. The right ventricular stroke work index and right heart failure scores indicated poor RV function in all groups. After 3 months of LVAD + short-term RVAD support, 46.7% still required ongoing support, and only 18.5% were weaned from RVAD support; 33.1% died. CONCLUSIONS The mortality rate after BiVAD support was high. Survival rates and adverse events were statistically not different among the investigated groups. In the future, composite study end points examining quality of life and adverse events beyond survival may help in shared decision-making prior to general mechanical circulatory support, particularly in patients with BiVAD implants.


2018 ◽  
Author(s):  
Charles C. Hill ◽  
Lindsay Raleigh

Mechanical circulatory support (MCS) involves the use of intra-aortic balloon pump (IABP), short-term percutaneous ventricular assist devices, long-term surgically implanted continuous-flow ventricular assist devices (cf-LVADs), and extracorporeal membrane oxygenation (ECMO) for the treatment of acute and chronic heart failure and cardiogenic shock. IABP is increasingly recognized as an important adjunct in the postoperative treatment arsenal for those patients with severely reduced left ventricular systolic function. Short-term percutaneous options for the treatment of acute right and left heart failure include both the Impella and Tandem Heart, whereas the Centrimag is often used in the surgical setting for acute cardiogenic shock and heart failure. Long-term surgical MCS options include the total artificial heart and the cf-LVADs HeartWare and Heartmate II. ECMO is frequently used for the treatment of acute cardiogenic shock and may be placed peripherally via a percutaneous approach or with central cannulation. ECMO is also increasingly used in the setting of acute cardiac life support, known as extracorporeal life support. Key words: cardiac critical care, extracorporeal membrane oxygenation, long-term ventricular assist device, mechanical circulatory support, short-term ventricular assist device 


Author(s):  
Einar Gude ◽  
Arnt E. Fiane

AbstractHeart failure with preserved ejection fraction (HFpEF) is increasing in prevalence and represents approximately 50% of all heart failure (HF) patients. Patients with this complex clinical scenario, characterized by high filling pressures, and reduced cardiac output (CO) associated with progressive multi-organ involvement, have so far not experienced any significant improvement in quality of life or survival with traditional HF treatment. Left ventricular assist devices (LVAD) have offered a new treatment alternative in terminal heart failure patients with reduced ejection fraction (HFrEF), providing a unique combination of significant pressure and volume unloading together with an increase in CO. The small left ventricular cavity in HFpEF patients challenges left-sided pressure unloading, and new anatomical entry points need to be explored for mechanical pressure and volume unloading. Optimized and pressure/volume-adjusted mechanical circulatory support (MCS) devices for HFrEF patients may conceivably be customized for HFpEF anatomy and hemodynamics. We have developed a long-term MCS device for HFpEF patients with atrial unloading in a pulsed algorithm, leading to a significant reduction of filling pressure, maintenance of pulse pressure, and increase in CO demonstrated in animal testing. In this article, we will discuss HFpEF pathology, hemodynamics, and the principles behind our novel MCS device that may improve symptoms and prognosis in HFpEF patients. Data from mock-loop hemolysis studies, acute, and chronic animal studies will be presented.


Sign in / Sign up

Export Citation Format

Share Document