scholarly journals Whole-exome sequencing in a consanguineous Pakistani family identifies a mutational hotspot in the COL7A1 gene, causing recessive dystrophic epidermolysis bullosa

2020 ◽  
Vol 29 (2) ◽  
pp. 86-89
Author(s):  
Atta Ur Rehman ◽  
Virginie G. Peter ◽  
Mathieu Quinodoz ◽  
Muhammad Dawood ◽  
Carlo Rivolta
2021 ◽  
Vol 12 (4) ◽  
pp. 412-416
Author(s):  
Mahdieh Taghizadeh ◽  
Sima Mansoori Derakhshan ◽  
Mahmoud Shekari Khaniani

Dystrophic epidermolysis bullosa (DEB) is a rare form of genodermatosis characterized by skin blisters, milia, scarring over the entire body, and nail dystrophy. In this study, a pedigree with one affected member with skin blisters, and a clinical diagnosis of epidermolysis bullosa who was a result of a non-consanguineous marriage, was investigated by whole-exome sequencing (WES). This survey revealed that the proband is a compound heterozygote for a previously reported heterozygous missense variant (c.6205C>T) and a heterozygous deletion of exons 13–24 in the COL7A1 gene. This study indicates that the use of WES along with copy number variation (CNV) analysis gives a higher diagnostic yield for such patients. Moreover, considering the autosomal recessive and dominant forms of the disease, both caused by variants in one gene, proper interpretation and classification of novel variants in heterozygous as well as homozygous states is always a major challenge.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 900 ◽  
Author(s):  
Shamsudheen Karuthedath Vellarikkal ◽  
Rijith Jayarajan ◽  
Ankit Verma ◽  
Sreelata Nair ◽  
Rowmika Ravi ◽  
...  

Dystrophic epidermolysis bullosa simplex (DEB) is a phenotypically diverse inherited skin fragility disorder. It is majorly manifested by appearance of epidermal bullae upon friction caused either by physical or environmental trauma. The phenotypic manifestations also include appearance of milia, scarring all over the body and nail dystrophy. DEB can be inherited in a recessive or dominant form and the recessive form of DEB (RDEB) is more severe. In the present study, we identify a novel p.G2254fs mutation in COL7A1 gene causing a sporadic case of RDEB by whole exome sequencing (WES). Apart from adding a novel frameshift Collagen VII mutation to the repertoire of known mutations reported in the disease, to the best of our knowledge, this is the first report of a genetically characterized case of DEB from India.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 900 ◽  
Author(s):  
Shamsudheen Karuthedath Vellarikkal ◽  
Rijith Jayarajan ◽  
Ankit Verma ◽  
Sreelata Nair ◽  
Rowmika Ravi ◽  
...  

Dystrophic epidermolysis bullosa simplex (DEB) is a phenotypically diverse inherited skin fragility disorder. It is majorly manifested by appearance of epidermal bullae upon friction caused either by physical or environmental trauma. The phenotypic manifestations also include appearance of milia, scarring all over the body and nail dystrophy. DEB can be inherited in a recessive or dominant form and the recessive form of DEB (RDEB) is more severe. In the present study, we identify a novel p.G2254fs mutation in COL7A1 gene causing a sporadic case of RDEB by whole exome sequencing (WES). Apart from adding a novel frameshift Collagen VII mutation to the repertoire of known mutations reported in the disease, to the best of our knowledge, this is the first report of a genetically characterized case of DEB from India.


Seizure ◽  
2017 ◽  
Vol 51 ◽  
pp. 200-203
Author(s):  
Zain Aslam ◽  
Eungi Lee ◽  
Mazhar Badshah ◽  
Muhammad Naeem ◽  
Changsoo Kang

2021 ◽  
Vol 22 (23) ◽  
pp. 12774
Author(s):  
Xianqing Wang ◽  
Fatma Alshehri ◽  
Darío Manzanares ◽  
Yinghao Li ◽  
Zhonglei He ◽  
...  

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare autosomal inherited skin disorder caused by mutations in the COL7A1 gene that encodes type VII collagen (C7). The development of an efficient gene replacement strategy for RDEB is mainly hindered by the lack of vectors able to encapsulate and transfect the large cDNA size of this gene. To address this problem, our group has opted to use polymeric-based non-viral delivery systems and minicircle DNA. With this approach, safety is improved by avoiding the usage of viruses, the absence of bacterial backbone, and the replacement of the control viral cytomegalovirus (CMV) promoter of the gene with human promoters. All the promoters showed impressive C7 expression in RDEB skin cells, with eukaryotic translation elongation factor 1 α (EF1α) promoter producing higher C7 expression levels than CMV following minicircle induction, and COL7A1 tissue-specific promoter (C7P) generating C7 levels similar to normal human epidermal keratinocytes. The improved system developed here has a high potential for use as a non-viral topical treatment to restore C7 in RDEB patients efficiently and safely, and to be adapted to other genetic conditions.


Sign in / Sign up

Export Citation Format

Share Document