scholarly journals Mechanism research of Salvia miltiorrhiza on treating myocardial ischemia reperfusion injury according to network pharmacology combined with molecular docking technique

Medicine ◽  
2021 ◽  
Vol 100 (48) ◽  
pp. e28132
Author(s):  
Zhiyan Jiang
2021 ◽  
Vol 11 (8) ◽  
pp. 1354-1365
Author(s):  
Meifang Yin ◽  
Lijuan Dai ◽  
Wenpei Ling ◽  
Chunyu Luo ◽  
Shuzhi Qin ◽  
...  

Radix Paeoniae Rubra (RPR) is a widely used herb medicine. To better understand the mechanism of RPR in the treatment of myocardial ischemia-reperfusion injury (MIRI), in this study, the network of protein–protein interaction of the RPR-MIRI targets was constructed and analyzed through network pharmacology and molecular docking. The enrichment analysis was performed and the network map was established, and the componenttarget network was then verified by molecular docking. In the result, there were 14 components and 52 targets related to MIRI. The results of Gene Ontology (GO) analysis displayed 182 biological processes, 44 cellular components, 56 molecular functions. 45 signal pathways were collected from Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, which were mainly related to Rap1, PI3 K-Akt signal pathway and so on. Molecular docking verified that the active components had lower binding energy with key targets, indicating that it had better binding activity. In conclusion, the treatment of RPR on MIRI is implemented through multi-component, multi-target and multi-pathway, which makes a provision for exploring the therapeutic mechanism of RPR and expanding its clinical application.


2021 ◽  
Vol 11 (9) ◽  
pp. 1505-1515
Author(s):  
Chengguo Zhao ◽  
Meifang Yin ◽  
Feng Li ◽  
Wenpei Ling ◽  
Chunyu Luo ◽  
...  

Ischemic heart disease (IHD) is the primary reason of death of cardiovascular diseases. Paeoniflorin (PF), a monoterpene glycoside extracted from Radix Paeoniae Rubra or Paeoniae Radix Alba, can ameliorate myocardial ischemia/reperfusion injury (MIRI), but its mechanism is not still defined. In this study, network pharmacology was utilized, the protein interaction network between PF and MIRI targets were screened for bioenrichment analysis. Moreover, the anti-MIRI effects of PF (30, 60 and 120 mg/kg) were investigated in vivo on rats for verification. The myocardial infarction area was assessed by TTC/Evans blue staining and morphological changes of tissues were evaluated using hematoxylin and eosin staining. The contents of myocardial enzymes and oxidation resistance were measured. The cell apoptosis was evaluated using TUNEL staining and the expression of proteins was estimated using Western Blot. In the results, the relevant targets and the biological processes of PF against MIRI were screened out, indicating its anti-MIRI potential pharmacological effects of PF. 120 mg/kg PF can shrink infarction area after ischemia/reperfusion, ameliorate pathological morphology in myocardial tissue, lower the levels of myocardial enzymes, and attenuate oxidative stress. Furthermore, PF could reduce the positive rate of TUNEL staining caused by MIRI. Moreover, 120 mg/kg PF could depress the protein levels of Bax, Caspase-3, Beclin-1 and Cathepsin B and increase the protein level of Bcl-2 on rats after reperfusion. In conclusion, Paeoniflorin has an anti-MIRI effect in rats via coordinate regulation of anti-oxidative stress, anti-apoptosis and inhibition of autophagy.


2021 ◽  
Vol 18 (7) ◽  
pp. 1467-1473
Author(s):  
Yang Ronghai ◽  
Yao Weiping ◽  
Liu YingFeng ◽  
Wang Xuejun ◽  
Liang Jianguang ◽  
...  

Purpose: To investigate the effect of Salvia miltiorrhiza injection on myocardial ischemia-reperfusion injury and PECAM-1 related pathways. Method: Male Wistar rats were used for establishment of myocardial ischemia-reperfusion model. The rats were randomly assigned to four groups: experimental group, low dose group (Salvia miltiorrhiza injection, 10 mL/kg/day), moderate dose group (Salvia miltiorrhiza injection, 20 mL/kg/day) and high dose group (Salvia miltiorrhiza injection, 40 mL/kg/day). Myocardial ischemia-reperfusion model was established in the four groups. Evans-TTC staining was used to assess relative area of ischemiareperfusion injury. Blood samples were collected for assay of PECAM-1 expression using enzymelinked immunosorbent assay (ELISA). Fresh blood platelets were collected in all groups, and divided into two groups - control group (normal culture) and experimental group (Salvia miltiorrhiza injection). The expression of PECAM-1 in blood platelets was assayed using Western blot. Result: Compared with the experimental group, Salvia miltiorrhiza injection ameliorated myocardial ischemia-reperfusion injury, and decreased the infarction area seen in Evans/TTC staining. PECAM-1 expression in blood was decreased by Salvia miltiorrhiza injection. Blood platelets dysfunction was induced after myocardial ischemia-reperfusion, and the level of PECAM-1 increased. However, Salvia miltiorrhiza injection treatment downregulated the expression of PECAM-1 after myocardial ischemiareperfusion. Conclusion: Salvia miltiorrhiza injection maintains normal function of blood platelets and ameliorates myocardial ischemia-reperfusion injury by decreasing expression of PECAM-1.


Sign in / Sign up

Export Citation Format

Share Document