scholarly journals Evaluation of an Audio-haptic Sensory Substitution Device for Enhancing Spatial Awareness for the Visually Impaired

2018 ◽  
Vol 95 (9) ◽  
pp. 757-765 ◽  
Author(s):  
Rebekka Hoffmann ◽  
Simone Spagnol ◽  
Árni Kristjánsson ◽  
Runar Unnthorsson
2014 ◽  
Vol 8 (2) ◽  
pp. 77-94 ◽  
Author(s):  
Juan D. Gomez ◽  
Guido Bologna ◽  
Thierry Pun

Purpose – The purpose of this paper is to overcome the limitations of sensory substitution methods (SSDs) to represent high-level or conceptual information involved in vision, which are mainly produced by the biological sensory mismatch between sight and substituting senses. Thus, provide the visually impaired with a more practical and functional SSD. Design/methodology/approach – Unlike any other approach, the SSD extends beyond a sensing prototype, by integrating computer vision methods to produce reliable knowledge about the physical world (at the lowest cost to the user). Importantly though, the authors do not abandon the typical encoding of low-level features into sound. The paper simply argues that any visual perception can be achieved through hearing needs to be reinforced or enhanced by techniques that lie beyond mere visual-to-audio mapping (e.g. computer vision, image processing). Findings – Experiments reported in this paper reveal that the See ColOr is learnable and functional, and provides easy interaction. In moderate time, participants were enabled to grasp visual information of the world out of which they could derive: spatial awareness, ability to find someone, location of daily objects and skill to walk safely avoiding obstacles. The encouraging results open a door toward autonomous mobility of the blind. Originality/value – The paper uses the “extended” approach to introduce and justify that the system is brand new, as well as the experimental studies on computer-vision extension of SSDs that are presented. Also, this is the first paper reporting on a terminated, integrated and functional system.


2017 ◽  
Vol 111 (2) ◽  
pp. 148-164 ◽  
Author(s):  
Oana Bălan ◽  
Alin Moldoveanu ◽  
Florica Moldoveanu ◽  
Hunor Nagy ◽  
György Wersényi ◽  
...  

Introduction As the number of people with visual impairments (that is, those who are blind or have low vision) is continuously increasing, rehabilitation and engineering researchers have identified the need to design sensory-substitution devices that would offer assistance and guidance to these people for performing navigational tasks. Auditory and haptic cues have been shown to be an effective approach towards creating a rich spatial representation of the environment, so they are considered for inclusion in the development of assistive tools that would enable people with visual impairments to acquire knowledge of the surrounding space in a way close to the visually based perception of sighted individuals. However, achieving efficiency through a sensory substitution device requires extensive training for visually impaired users to learn how to process the artificial auditory cues and convert them into spatial information. Methods Considering all the potential advantages game-based learning can provide, we propose a new method for training sound localization and virtual navigational skills of visually impaired people in a 3D audio game with hierarchical levels of difficulty. The training procedure is focused on a multimodal (auditory and haptic) learning approach in which the subjects have been asked to listen to 3D sounds while simultaneously perceiving a series of vibrations on a haptic headband that corresponds to the direction of the sound source in space. Results The results we obtained in a sound-localization experiment with 10 visually impaired people showed that the proposed training strategy resulted in significant improvements in auditory performance and navigation skills of the subjects, thus ensuring behavioral gains in the spatial perception of the environment.


2020 ◽  
Vol 11 ◽  
Author(s):  
Crescent Jicol ◽  
Tayfun Lloyd-Esenkaya ◽  
Michael J. Proulx ◽  
Simon Lange-Smith ◽  
Meike Scheller ◽  
...  

1988 ◽  
Vol 82 (5) ◽  
pp. 188-192 ◽  
Author(s):  
D.L. Chin

The purpose of the study presented here was to investigate the effects of instruction in dance movement on the spatial awareness of visually impaired elementary students. Sixteen visually impaired students were randomly assigned to two groups. Eight students participated in physical education and received no dance instruction. Eight students received dance instruction in addition to physical education. The Hill Performance Test of Selected Positional Concepts was administered before and after the treatment period. An analysis of variance revealed significant main effects. A Scheffé analysis revealed a significant difference between the pretest and posttest scores of the group that received dance instruction.


2016 ◽  
Vol 29 (4-5) ◽  
pp. 337-363 ◽  
Author(s):  
Giles Hamilton-Fletcher ◽  
Thomas D. Wright ◽  
Jamie Ward

Visual sensory substitution devices (SSDs) can represent visual characteristics through distinct patterns of sound, allowing a visually impaired user access to visual information. Previous SSDs have avoided colour and when they do encode colour, have assigned sounds to colour in a largely unprincipled way. This study introduces a new tablet-based SSD termed the ‘Creole’ (so called because it combines tactile scanning with image sonification) and a new algorithm for converting colour to sound that is based on established cross-modal correspondences (intuitive mappings between different sensory dimensions). To test the utility of correspondences, we examined the colour–sound associative memory and object recognition abilities of sighted users who had their device either coded in line with or opposite to sound–colour correspondences. Improved colour memory and reduced colour-errors were made by users who had the correspondence-based mappings. Interestingly, the colour–sound mappings that provided the highest improvements during the associative memory task also saw the greatest gains for recognising realistic objects that also featured these colours, indicating a transfer of abilities from memory to recognition. These users were also marginally better at matching sounds to images varying in luminance, even though luminance was coded identically across the different versions of the device. These findings are discussed with relevance for both colour and correspondences for sensory substitution use.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6275
Author(s):  
Santiago Real ◽  
Alvaro Araujo

Herein, we describe the Virtually Enhanced Senses (VES) system, a novel and highly configurable wireless sensor-actuator network conceived as a development and test-bench platform of navigation systems adapted for blind and visually impaired people. It allows to immerse its users into “walkable” purely virtual or mixed environments with simulated sensors and validate navigation system designs prior to prototype development. The haptic, acoustic, and proprioceptive feedback supports state-of-art sensory substitution devices (SSD). In this regard, three SSD were integrated in VES as examples, including the well-known “The vOICe”. Additionally, the data throughput, latency and packet loss of the wireless communication can be controlled to observe its impact in the provided spatial knowledge and resulting mobility and orientation performance. Finally, the system has been validated by testing a combination of two previous visual-acoustic and visual-haptic sensory substitution schemas with 23 normal-sighted subjects. The recorded data includes the output of a “gaze-tracking” utility adapted for SSD.


Author(s):  
Mariacarla Memeo ◽  
Marco Jacono ◽  
Giulio Sandini ◽  
Luca Brayda

Abstract Background In this work, we present a novel sensory substitution system that enables to learn three dimensional digital information via touch when vision is unavailable. The system is based on a mouse-shaped device, designed to jointly perceive, with one finger only, local tactile height and inclination cues of arbitrary scalar fields. The device hosts a tactile actuator with three degrees of freedom: elevation, roll and pitch. The actuator approximates the tactile interaction with a plane tangential to the contact point between the finger and the field. Spatial information can therefore be mentally constructed by integrating local and global tactile cues: the actuator provides local cues, whereas proprioception associated with the mouse motion provides the global cues. Methods The efficacy of the system is measured by a virtual/real object-matching task. Twenty-four gender and age-matched participants (one blind and one blindfolded sighted group) matched a tactile dictionary of virtual objects with their 3D-printed solid version. The exploration of the virtual objects happened in three conditions, i.e., with isolated or combined height and inclination cues. We investigated the performance and the mental cost of approximating virtual objects in these tactile conditions. Results In both groups, elevation and inclination cues were sufficient to recognize the tactile dictionary, but their combination worked at best. The presence of elevation decreased a subjective estimate of mental effort. Interestingly, only visually impaired participants were aware of their performance and were able to predict it. Conclusions The proposed technology could facilitate the learning of science, engineering and mathematics in absence of vision, being also an industrial low-cost solution to make graphical user interfaces accessible for people with vision loss.


Sign in / Sign up

Export Citation Format

Share Document