scholarly journals Enabling visually impaired people to learn three-dimensional tactile graphics with a 3DOF haptic mouse

Author(s):  
Mariacarla Memeo ◽  
Marco Jacono ◽  
Giulio Sandini ◽  
Luca Brayda

Abstract Background In this work, we present a novel sensory substitution system that enables to learn three dimensional digital information via touch when vision is unavailable. The system is based on a mouse-shaped device, designed to jointly perceive, with one finger only, local tactile height and inclination cues of arbitrary scalar fields. The device hosts a tactile actuator with three degrees of freedom: elevation, roll and pitch. The actuator approximates the tactile interaction with a plane tangential to the contact point between the finger and the field. Spatial information can therefore be mentally constructed by integrating local and global tactile cues: the actuator provides local cues, whereas proprioception associated with the mouse motion provides the global cues. Methods The efficacy of the system is measured by a virtual/real object-matching task. Twenty-four gender and age-matched participants (one blind and one blindfolded sighted group) matched a tactile dictionary of virtual objects with their 3D-printed solid version. The exploration of the virtual objects happened in three conditions, i.e., with isolated or combined height and inclination cues. We investigated the performance and the mental cost of approximating virtual objects in these tactile conditions. Results In both groups, elevation and inclination cues were sufficient to recognize the tactile dictionary, but their combination worked at best. The presence of elevation decreased a subjective estimate of mental effort. Interestingly, only visually impaired participants were aware of their performance and were able to predict it. Conclusions The proposed technology could facilitate the learning of science, engineering and mathematics in absence of vision, being also an industrial low-cost solution to make graphical user interfaces accessible for people with vision loss.

2017 ◽  
Vol 111 (2) ◽  
pp. 148-164 ◽  
Author(s):  
Oana Bălan ◽  
Alin Moldoveanu ◽  
Florica Moldoveanu ◽  
Hunor Nagy ◽  
György Wersényi ◽  
...  

Introduction As the number of people with visual impairments (that is, those who are blind or have low vision) is continuously increasing, rehabilitation and engineering researchers have identified the need to design sensory-substitution devices that would offer assistance and guidance to these people for performing navigational tasks. Auditory and haptic cues have been shown to be an effective approach towards creating a rich spatial representation of the environment, so they are considered for inclusion in the development of assistive tools that would enable people with visual impairments to acquire knowledge of the surrounding space in a way close to the visually based perception of sighted individuals. However, achieving efficiency through a sensory substitution device requires extensive training for visually impaired users to learn how to process the artificial auditory cues and convert them into spatial information. Methods Considering all the potential advantages game-based learning can provide, we propose a new method for training sound localization and virtual navigational skills of visually impaired people in a 3D audio game with hierarchical levels of difficulty. The training procedure is focused on a multimodal (auditory and haptic) learning approach in which the subjects have been asked to listen to 3D sounds while simultaneously perceiving a series of vibrations on a haptic headband that corresponds to the direction of the sound source in space. Results The results we obtained in a sound-localization experiment with 10 visually impaired people showed that the proposed training strategy resulted in significant improvements in auditory performance and navigation skills of the subjects, thus ensuring behavioral gains in the spatial perception of the environment.


Perception ◽  
10.1068/p3253 ◽  
2002 ◽  
Vol 31 (6) ◽  
pp. 747-769 ◽  
Author(s):  
Morton A Heller ◽  
Deneen D Brackett ◽  
Eric Scroggs ◽  
Heather Steffen ◽  
Kim Heatherly ◽  
...  

Perception of raised-line pictures in blindfolded-sighted, congenitally blind, late-blind, and low-vision subjects was studied in a series of experiments. The major aim of the study was to examine the value of perspective drawings for haptic pictures and visually impaired individuals. In experiment 1, subjects felt two wooden boards joined at 45°, 90°, or 135°, and were instructed to pick the correct perspective drawing from among four choices. The first experiment on perspective found a significant effect of visual status, with much higher performance by the low-vision subjects. Mean performance for the congenitally blind subjects was not significantly different from that of the late-blind and blindfolded-sighted subjects. In a further experiment, blindfolded subjects drew tangible pictures of three-dimensional (3-D) geometric solids, and then engaged in a matching task. Counter to expectations, performance was not impaired for the 3-D drawings as compared with the frontal viewpoints. Subjects were also especially fast and more accurate when matching top views. Experiment 5 showed that top views were easiest for all of the visually impaired subjects, including those who were congenitally blind. Experiment 5 yielded higher performance for 3-D than frontal viewpoints. The results of all of the experiments were consistent with the idea that visual experience is not necessary for understanding perspective drawings of geometrical objects.


2017 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Maxime Ambard

Visuo-auditory sensory substitution devices transform a video stream into an audio stream to help visually impaired people in situations where spatial information is required, such as avoiding moving obstacles. In these particular situations, the latency between an event in the real world and its auditory transduction is of paramount importance. In this article, we describe an optimized software architecture for low-latency video-to-audio transduction using current mobile hardware. We explain step-by-step the required computations and we report the corresponding measured latencies. The whole latency is approximately 65 ms with a capture resolution of 160 × 120 at 30 frames-per-second and 1000 sonified pixels per frame.


1994 ◽  
Vol 88 (2) ◽  
pp. 152-156 ◽  
Author(s):  
K.J. McCulloh ◽  
I. Crawford ◽  
J.D. Resnick

This article describes an eight-week structured social support group for midlife and older adults who are adventitiously visually impaired. The group objectives, topics covered, and issues encountered are presented, along with recommendations for developing future support groups for this population.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


2013 ◽  
Vol 36 (5) ◽  
pp. 546-547 ◽  
Author(s):  
Theresa Burt de Perera ◽  
Robert Holbrook ◽  
Victoria Davis ◽  
Alex Kacelnik ◽  
Tim Guilford

AbstractAnimals navigate through three-dimensional environments, but we argue that the way they encode three-dimensional spatial information is shaped by how they use the vertical component of space. We agree with Jeffery et al. that the representation of three-dimensional space in vertebrates is probably bicoded (with separation of the plane of locomotion and its orthogonal axis), but we believe that their suggestion that the vertical axis is stored “contextually” (that is, not containing distance or direction metrics usable for novel computations) is unlikely, and as yet unsupported. We describe potential experimental protocols that could clarify these differences in opinion empirically.


2019 ◽  
Vol 19 (03) ◽  
pp. 1950001
Author(s):  
YEONGJIN KIM ◽  
YOUNGJIN NA ◽  
SOOBYEONG KIM ◽  
JEONGYOON YI ◽  
BUMMO AHN

Stress incontinence occurs due to the inability to control an urge to urinate, which affects the quality of daily life. Although there is an existing therapeutics with polymer mesh tape, it is hard to fix around the urethra to restore the function of the pubourethral ligament. Therefore, in this research, an infra-obturator tension (IOT) sling was introduced to minimize the mobility of the bladder and urethra against intra-abdominal pressure. To verify the IOT performance, two different hypotheses were formulated: The hardness and volume of the IOT support the urethra and help prevent it from deforming by intra-abdominal pressure. The rotatory motion of the IOT can bend the urethra at the contact point and help restore the function of pubourethral ligament to increase vaginal tension. For the first hypothesis, a finite element simulation was conducted using three-dimensional geometrical model obtained by the computed tomography images of patients. For the second hypothesis, surgeons performed an IOT insertion operation and analyzed the sling rotation from the patients’ CT images (mean: 21∘). From the results, the mobility of the urethra was decreased because of IOT insertion. The mobility was also decreased because of the subsequent fibrotic changes from the encapsulation of the IOT.


Sign in / Sign up

Export Citation Format

Share Document