Comparison of Surgical Strategies between Proximal Nerve Graft and/or Nerve Transfer and Distal Nerve Transfer Based on Functional Restoration of Elbow Flexion

2018 ◽  
Vol 141 (1) ◽  
pp. 68e-79e ◽  
Author(s):  
Ching-Hsuan Hu ◽  
Tommy Nai-Jen Chang ◽  
Johnny Chuieng-Yi Lu ◽  
Vincent G. Laurence ◽  
David Chwei-Chin Chuang
2018 ◽  
Vol 34 (09) ◽  
pp. 669-671 ◽  
Author(s):  
David Chuang

Abstract Background Nerve transfer can be broadly separated into two categories: proximal nerve graft and/or transfer and distal nerve transfer. The superiority of proximal nerve graft/transfer over distal nerve transfer strategy has been debated extensively, but which strategy is the best has not yet been defined. Each technique has its own advantages and disadvantages. However, proximal nerve graft/transfer is still the main reconstructive procedure based on the principle of “no diagnosis, then no treatment.” Proximal nerve transfer can avoid iatrogenic injury where the lesion is still in continuity and neurolysis is the only procedure without further cutting the nerve. Results Our clinical and experimental study show that proximal nerve grafts/transfers yield at least equal or better results compared to distal nerve transfers. Proximal nerve grafts/transfers remain the mainstay of my reconstructive strategy. Proximal nerve graft/transfer offers more accurate diagnosis and proper treatment to restore shoulder and elbow functions simultaneously. Distal nerve transfers can offer more efficient elbow flexion. Conclusion Combined, both strategies in primary nerve reconstruction are especially recommended when there is no healthy or not enough donor nerve available Distal nerve transfers should be considered as a complementary option for proximal nerve grafts/ transfers.


2018 ◽  
Vol 37 (04) ◽  
pp. 285-290
Author(s):  
Mario Siqueira ◽  
Roberto Martins ◽  
Wilson Faglioni Junior ◽  
Luciano Foroni ◽  
Carlos Heise

Objective To present the functional outcomes of distal nerve transfer techniques for restoration of elbow flexion after upper brachial plexus injury. Method The files of 78 adult patients with C5, C6, ± C7 lesions were reviewed. The attempt to restore elbow flexion was made by intraplexus distal nerve transfers using a fascicle of the ulnar nerve (group A, n = 43), or a fascicle of the median nerve (group B, n = 16) or a combination of both (group C, n = 19). The result of the treatment was defined based on the British Medical Research Council grading system: muscle strength < M3 was considered a poor result. Results The global incidence of good/excellent results with these nerve transfers was 80.7%, and for different surgical techniques (groups A, B, C), it was 86%, 56.2% and 100% respectively. Patients submitted to ulnar nerve transfer or double transfer (ulnar + median fascicles transfer) had a better outcome than those submitted to median nerve transfer alone (p < 0.05). There was no significant difference between the outcome of ulnar transfer and double transfer. Conclusion In cases of traumatic injury of the upper brachial plexus, good and excelent results in the restoration of elbow flexion can be obtained using distal nerve transfers.


2013 ◽  
Vol 118 (1) ◽  
pp. 155-159 ◽  
Author(s):  
Johannes F. Plate ◽  
L. Kirsten Ely ◽  
Benjamin R. Pulley ◽  
Beth P. Smith ◽  
Zhongyu Li

The treatment of patients with prolonged denervation from a posterior cord brachial plexus injury is challenging and no management guidelines exist to follow. The authors describe the case of a 26-year-old man who presented to our clinic for treatment 11 months after suffering a high-energy injury to the posterior cord of the brachial plexus. A combined 9-cm proximal cable nerve graft procedure and a pronator branch to the posterior interosseous nerve transfer were performed. Satisfactory deltoid, triceps, wrist, and finger extensor recovery was noted 3 years after surgery. Patients with prolonged denervation from posterior cord injuries can be successfully treated with a combination of a proximal nerve graft and a distal nerve transfer.


2021 ◽  
Author(s):  
Alexander A. Gatskiy ◽  
Ihor B. Tretyak

A certain number of spontaneously recovering birth injuries to the brachial (BPI) plexus are known to be accompanied by muscle co-contractions (Co-Cs). The process of aberrant spontaneous regeneration contributes to the appearance of this phenomenon. Treatment strategies are mostly narrowed down to temporarily “switching off” the antagonist, allowing the agonist to perform. Less is known about the incidence of BPI-associated Co-Cs in adults (a-BPI), the control of which mainly presumes the extrapolation of a treatment strategy that has been shown to be effective in infants. Nowadays, surgical reconstruction of independent elbow flexion at BPIs relies heavily on redirection (transfer) of nerves that produce their own Co-Cs. These induced Co-Cs could potentially be reduced. Selecting the appropriate nerve transfer strategy (when the donor pool is narrowing), with its potential impact on the already complex and intricate global and segmental biomechanics of the upper extremity, becomes challenging. The chapter presents the anatomical background for the occurrence of muscular Co-Cs, a work on clinical classification of both regeneration associated and induced Co-Cs, possible surgical strategies, their benefits and limitations, in the presence of regeneration-associated muscle Co-Cs at a-BPI and clinical examples.


2020 ◽  
Vol 25 (03) ◽  
pp. 307-314
Author(s):  
Gavrielle Hui-Ying Kang ◽  
Rebecca Qian-Ru Lim ◽  
Fok-Chuan Yong

Background: The neural surgical options for reconstruction of elbow flexion in brachial plexus injuries depend on the availability of nerve donors. In upper-type avulsion injuries, the ulnar or median nerves, when intact, are reliable intra-plexal donor nerves for transfers to the biceps muscle. In complete avulsion injuries, donors are limited to extra-plexal sources, such as intercostal nerves (ICNs). Methods: We reviewed our results of ICN and partial distal nerve (ulnar or median) transfers for elbow flexion reconstruction in patients with brachial plexus avulsion injuries. The time taken for recovery of elbow flexion strength to M3 and the final motor outcome at 2 years were compared between both groups. Results: 38 patients were included in this study. 27 had ICN transfers to the musculocutaneous nerve (MCN), 8 had partial ulnar nerve transfers and 3 had partial median nerve transfers to the MCN's biceps motor branch. The mean time interval from injury to surgery was 3.6 months. Recovery of elbow flexion was observed earlier in the distal nerve transfer group (p < 0.05). Overall, success rates were higher in patients with distal nerve transfers (100%), compared to ICN transfers (63%) at 2 years (p = 0.018). Patients with distal nerve transfers achieved a higher final median strength of M4.0 [Interquartile range (IQR) 3.5–4.5], compared to M3.5 (IQR 2.0–4.0) in the ICN group (p = 0.031). In the subgroup of patients with upper-type brachial plexus injuries, there were no significant differences in motor outcomes between the ICN versus distal nerve transfers group. Conclusions: In our entire cohort, patients with distal nerve transfers had faster motor recovery and better elbow flexion power than patients with ICN transfers. In patients with partial brachial plexus injuries, outcomes of ICN transfers were not inferior to distal nerve transfers.


2017 ◽  
Vol 33 (9) ◽  
pp. 1571-1574 ◽  
Author(s):  
Carlos O. Heise ◽  
Mario G. Siqueira ◽  
Roberto S. Martins ◽  
Luciano H. Foroni ◽  
Hugo Sterman-Neto

2021 ◽  
Author(s):  
Mariano Socolovsky ◽  
Gilda di Masi ◽  
Gonzalo Bonilla ◽  
Ana Lovaglio ◽  
Kartik G Krishnan

Abstract BACKGROUND Traumatic brachial plexus injuries cause long-term maiming of patients. The major target function to restore in complex brachial plexus injury is elbow flexion. OBJECTIVE To retrospectively analyze the correlation between the length of the nerve graft and the strength of target muscle recovery in extraplexual and intraplexual nerve transfers. METHODS A total of 51 patients with complete or near-complete brachial plexus injuries were treated with a combination of nerve reconstruction strategies. The phrenic nerve (PN) was used as axon donor in 40 patients and the spinal accessory nerve was used in 11 patients. The recipient nerves were the anterior division of the upper trunk (AD), the musculocutaneous nerve (MC), or the biceps branches of the MC (BBs). An index comparing the strength of elbow flexion between the affected and the healthy arms was correlated with the choice of target nerve recipient and the length of nerve grafts, among other parameters. The mean follow-up was 4 yr. RESULTS Neither the choice of MC or BB as a recipient nor the length of the nerve graft showed a strong correlation with the strength of elbow flexion. The choice of very proximal recipient nerve (AD) led to axonal misrouting in 25% of the patients in whom no graft was employed. CONCLUSION The length of the nerve graft is not a negative factor for obtaining good muscle recovery for elbow flexion when using PN or spinal accessory nerve as axon donors in traumatic brachial plexus injuries.


Neurosurgery ◽  
2011 ◽  
Vol 70 (2) ◽  
pp. E516-E520 ◽  
Author(s):  
Leandro Pretto Flores

Abstract BACKGROUND AND IMPORTANCE: Restoration of elbow extension has not been considered of much importance regarding functional outcomes in brachial plexus surgery; however, the flexion of the elbow joint is only fully effective if the motion can be stabilized, what can be achieved solely if the triceps brachii is coactivated. To present a novel nerve transfer of a healthy motor fascicle from the ulnar nerve to the nerve of the long head of the triceps to restore the elbow extension function in brachial plexus injuries involving the upper and middle trunks. CLINICAL PRESENTATION: Case 1 is a 32-year-old man sustaining a right brachial extended upper plexus injury in a motorcycle accident 5 months before admission. The computed tomography myelogram demonstrated avulsion of the C5 and C6 roots. Case 2 is a 24-year-old man who sustained a C5-C7 injury to the left brachial plexus in a traffic accident 4 months before admission. Computed tomography myelogram demonstrated signs of C6 and C7 root avulsion. The technique included an incision at the medial border of the biceps, in the proximal third of the involved arm, followed by identification of the ulnar nerve, the radial nerve, and the branch to the long head of the triceps. The proximal stump of a motor fascicle from the ulnar nerve was sutured directly to the distal stump of the nerve of the long head of the triceps. Techniques to restore elbow flexion and shoulder abduction were applied in both cases. Triceps strength Medical Research Council M4 grade was obtained in both cases. CONCLUSION: The attempted nerve transfer was effective for restoration of elbow extension in primary brachial plexus surgery; however, it should be selected only for cases in which other reliable donor nerves were used to restore elbow flexion.


Microsurgery ◽  
2018 ◽  
Vol 39 (5) ◽  
pp. 434-440
Author(s):  
Michele R. Colonna ◽  
Davide Pino ◽  
Bruno Battiston ◽  
Francesco Stagno d'Alcontres ◽  
Konstantinos Natsis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document