Image Quality, Overall Evaluability, and Effective Radiation Dose of Coronary Computed Tomography Angiography With Prospective Electrocardiographic Triggering Plus Intracycle Motion Correction Algorithm in Patients With a Heart Rate Over 65 Beats Per Minute

Author(s):  
Gianluca Pontone ◽  
Giuseppe Muscogiuri ◽  
Andrea Baggiano ◽  
Daniele Andreini ◽  
Andrea I. Guaricci ◽  
...  
2020 ◽  
pp. 1-10
Author(s):  
Yongxia Zhao ◽  
Dongxue Li ◽  
Zhichao Liu ◽  
Xue Geng ◽  
Tianle Zhang ◽  
...  

OBJECTIVE: To determine the optimal pre-adaptive and post-adaptive level statistical iterative reconstruction V (ASiR-V) for improving image quality and reducing radiation dose in coronary computed tomography angiography (CCTA). METHODS: The study was divided into two parts. In part I, 150 patients for CCTA were prospectively enrolled and randomly divided into 5 groups (A, B, C, D, and E) with progressive scanning from 40% to 80% pre-ASiR-V with 10% intervals and reconstructing with 70% post-ASiR-V. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Subjective image quality was assessed using a 5-point scale. The CT dose index volume (CTDIvol) and dose-length product (DLP) of each patient were recorded and the effective radiation dose (ED) was calculated after statistical analysis by optimizing for the best pre-ASiR-V value with the lowest radiation dose while maintaining overall image quality. In part II, the images were reconstructed with the recommended optimal pre-ASiR-V values in part I (D group) and 40%–90% of post-ASiR-V. The reconstruction group (D group) was divided into 6 subgroups (interval 10%, D0:40% post-ASiR-V, D1:50% post - ASiR-V, D2:60% post-ASiR-V, D3:70% post-ASiR-V, D4:80% post-ASiR-V, and D5:90% post-ASiR-V).The SNR and CNR of D0-D5 subgroups were calculated and analyzed using one-way analysis of variance, and the consistency of the subjective scores used the k test. RESULTS: There was no significant difference in the SNRs, CNRs, and image quality scores among A, B, C, and D groups (P > 0.05). The SNR, CNR, and image quality scores of the E group were lower than those of the A, B, C, and D groups (P < 0.05). The mean EDs in the B, C, and D groups were reduced by 7.01%, 13.37%, and 18.87%, respectively, when compared with that of the A group. The SNR and CNR of the D4–D5 subgroups were higher than the D0-D3 subgroups, and the image quality scores of the D4 subgroups were higher than the other subgroups (P < 0.05). CONCLUSION: The wide-detector combined with 70% pre-ASiR-V and 80% post-ASiR-V significantly reduces the radiation dose of CCTA while maintaining overall image quality as compared with the manufacture’s recommendation of 40% pre-ASiR-V.


2016 ◽  
Vol 25 (4) ◽  
pp. 230-234
Author(s):  
Wai-Yung Yu ◽  
Thye Sin Ho ◽  
Henry Ko ◽  
Wai-Yee Chan ◽  
Serene Ong ◽  
...  

Introduction: The use of computed tomography (CT) imaging as a diagnostic modality is increasing rapidly and CT is the dominant contributor to diagnostic medical radiation exposure. The aim of this project was to reduce the effective radiation dose to patients undergoing cranial CT examination, while maintaining diagnostic image quality. Methods: Data from a total of 1003, 132 and 27 patients were examined for three protocols: CT head, CT angiography (CTA), and CT perfusion (CTP), respectively. Following installation of adaptive iterative dose reduction (AIDR) 3D software, tube current was lowered in consecutive cycles, in a stepwise manner and effective radiation doses measured at each step. Results: Baseline effective radiation doses for CT head, CTA and CTP were 1.80, 3.60 and 3.96 mSv, at currents of 300, 280 and 130–150 mA, respectively. Using AIDR 3D and final reduced currents of 160, 190 and 70–100 mA for CT head, CTA and CTP gave effective doses of 1.29, 3.18 and 2.76 mSv, respectively. Conclusion: We demonstrated that satisfactory reductions in the effective radiation dose for CT head (28.3%), CTA (11.6%) and CTP (30.1%) can be achieved without sacrificing diagnostic image quality. We have also shown that iterative reconstruction techniques such as AIDR 3D can be effectively used to help reduce effective radiation dose. The dose reductions were performed within a short period and can be easily achievable, even in busy departments.


2018 ◽  
Vol 60 (2) ◽  
pp. 177-185
Author(s):  
Xiangying Du ◽  
Bin Lu ◽  
Daoyu Hu ◽  
Bin Song ◽  
Kuncheng Li

Background Concern about radiation exposure is leading to an increasing interest in low-concentration contrast medium administration. Purpose To evaluate the image quality and safety profile after administration of iodixanol 270 mg I/mL at 100-kVp tube voltage with iterative reconstruction in subjects undergoing computed tomography angiography (CTA). Material and Methods Patients who completed CTA examination using iodixanol 270 mg I/mL and 100-kVp tube voltage along with iterative reconstruction for coronary, aortic, head and neck, renal, or pulmonary arteries were included. Image quality was qualitatively and quantitatively evaluated. Incidence of adverse events (AEs) and adverse drug reactions (ADRs) within seven days and radiation dose were also analyzed. Results A total of 4513 individuals in 42 centers in China were enrolled, among which 4367 were included in efficacy analysis. The mean image quality score was 4.8 ± 0.45 across all arteries (all above 4.6) and 99.7% of the individuals’ images were classified as evaluable. The CT attenuation, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in the regions of interest (ROIs) were 431.79 ± 99.018, 18.29 ± 11.947, and 28.21 ± 19.535 HU, respectively. Of all the participants, 68 (1.5%) and 65 (1.4%) experienced AEs and ADRs, respectively. No serious AEs or AEs leading to discontinuation occurred. The average effective radiation dose was 3.13 ± 2.550 mSv. Conclusion Iodixanol 270 mg I/mL in combination with 100-kVp tube voltage and iterative reconstruction could be safely applied in CTA and yield high-quality and evaluable images with reduced radiation dose.


2021 ◽  
pp. 028418512198995
Author(s):  
Erdal Tekin ◽  
Kutsi Tuncer ◽  
Ibrahim Ozlu ◽  
Recep Sade ◽  
Rustem Berhan Pirimoglu ◽  
...  

Background The use and frequency of computed tomography (CT) are increasing day by day in emergency departments (ED). This increases the amount of radiation exposed. Purpose To evaluate the image quality obtained by ultra-low-dose CT (ULDCT) in patients with suspected wrist fractures in the ED and to investigate whether it is an alternative to standard-dose CT (SDCT). Material and Methods This is a study prospectively examining 336 patients who consulted the ED for wrist trauma. After exclusion criteria were applied, the patients were divided into the study and control groups. Then, SDCT (120 kVp and 100 mAs) and ULDCT (80 kVp and 5 mAs) wrist protocols were applied simultaneously. The images obtained were evaluated for image quality and fracture independently by a radiologist and an emergency medical specialist using a 5-point scale. Results The effective radiation dose calculated for the control group scans was 41.1 ± 2.1 µSv, whereas the effective radiation dose calculated for the study group scans was 0.5 ± 0.0 µSv. The effective radiation dose of the study group was significantly lower than that of the control group ( P < 0.01). The CT images in the study group showed no significant differences in the mean image quality score between observer 1 and observer 2 (3.4 and 4.3, respectively; P = 0.58). Both observers could detect all fractures using the ULDCT images. Conclusion ULDCT provides high-quality images in wrist traumas while reducing the radiation dose by approximately 98% compared to SDCT without any changes in diagnostic accuracy.


Sign in / Sign up

Export Citation Format

Share Document