scholarly journals Scaling of elastic energy storage in mammalian limb tendons: do small mammals really lose out?

2005 ◽  
Vol 1 (1) ◽  
pp. 57-59 ◽  
Author(s):  
Sharon R Bullimore ◽  
Jeremy F Burn

It is widely believed that elastic energy storage is more important in the locomotion of larger mammals. This is based on: (a) comparison of kangaroos with the smaller kangaroo rat; and (b) calculations that predict that the capacity for elastic energy storage relative to body mass increases with size. Here we argue that: (i) data from kangaroos and kangaroo rats cannot be generalized to other mammals; (ii) the elastic energy storage capacity relative to body mass is not indicative of the importance of elastic energy to an animal; and (iii) the contribution of elastic energy to the mechanical work of locomotion will not increase as rapidly with size as the mass-specific energy storage capacity, because larger mammals must do relatively more mechanical work per stride. We predict how the ratio of elastic energy storage to mechanical work will change with size in quadrupedal mammals by combining empirical scaling relationships from the literature. The results suggest that the percentage contribution of elastic energy to the mechanical work of locomotion decreases with size, so that elastic energy is more important in the locomotion of smaller mammals. This now needs to be tested experimentally.

2021 ◽  
Vol 687 (1) ◽  
pp. 012103
Author(s):  
Zenggong Cao ◽  
Chunyi Wang ◽  
Bo Peng ◽  
Yasong Wang ◽  
Peng Du ◽  
...  

2021 ◽  
Vol 50 (13) ◽  
pp. 4643-4650
Author(s):  
Miao He ◽  
Yi He ◽  
Xinyi Zhou ◽  
Qiang Hu ◽  
Shixiang Ding ◽  
...  

The device exhibits 95.3% retention in specific capacitance after 5000 cycles and possesses superior energy-storage capacity.


2018 ◽  
Vol 1 (2) ◽  
pp. 31-39 ◽  
Author(s):  
Kandasamy Nandha Kumar ◽  
Krishnasamy Vijayakumar ◽  
Chaudhari Kalpesh

2021 ◽  
Author(s):  
Anders Wörman ◽  
Daniela Mewes ◽  
Joakim Riml ◽  
Cintia Bertacchi-Uvo ◽  
Ilias Pechlivanidis

<p>The functionality of a renewable electricity system in Europe depends on long-term climate variations, uneven spatiotemporal distribution of renewable energy, and constraints of storage and electric transmission. In particular, hydropower offers a large capacity for energy storage and production flexibility, but only stands for a minor part of the total energy potential. Here we explored the spatial and temporal power variance of a combined system consisting of wind-, solar- and hydropower availability for a 35-year period based on historical hydro-meteorological data from large parts of Europe. A spectral analysis of these historical time-series shows that spatiotemporal coordination within the power system can potentially contribute with a “virtual” energy storage capacity that is many times higher than the actual energy storage capacity contained in the existing hydropower reservoirs in Europe. Such virtual energy storage capacity implies reduced water storage demand, hence, indirectly contributes to reduced constraints of the food-water-energy nexus also in a wider system perspective. This study focused on the theoretical maximum potential for virtual energy storage, but the feasibility of this potential is limited by the uncertainty associated with production optimization and the meteorologic forecasts of future energy availability.</p>


2021 ◽  
Author(s):  
Xiaolin Jiang ◽  
Tao Chen ◽  
Bo Liu ◽  
Rongke Sun ◽  
Jiecai Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document