scholarly journals Patterns of split sex ratio in ants have multiple evolutionary causes based on different within-colony conflicts

2009 ◽  
Vol 5 (5) ◽  
pp. 713-716 ◽  
Author(s):  
Rolf Kümmerli ◽  
Laurent Keller

Split sex ratio—a pattern where colonies within a population specialize in either male or queen production—is a widespread phenomenon in ants and other social Hymenoptera. It has often been attributed to variation in colony kin structure, which affects the degree of queen–worker conflict over optimal sex allocation. However, recent findings suggest that split sex ratio is a more diverse phenomenon, which can evolve for multiple reasons. Here, we provide an overview of the main conditions favouring split sex ratio. We show that each split sex-ratio type arises due to a different combination of factors determining colony kin structure, queen or worker control over sex ratio and the type of conflict between colony members.

1997 ◽  
Vol 352 (1364) ◽  
pp. 1921-1933 ◽  
Author(s):  
Andrew F. G. Bourke

The median proportion of investment in females among 11 populations of seven bumble bee ( Bombus ) species was 0.32 (range 0.07 to 0.64). By contrast, two species of workerless social parasites in the related genus Psithyrus had female–biased sex allocation, the reasons for which remain unclear. Male–biased sex allocation in Bombus contradicts the predictions of Trivers and Hare's sex ratio model for the social Hymenoptera, which are that the population sex investment ratio should be 0.5 (1:1) under queen control and 0.75 (3:1 females:males) under worker control (assuming single, once–mated, outbred queens and non–reproductive workers). Male bias in Bombus does not appear to be either an artefact, or purely the result of symbiotic sex ratio distorters. According to modifications of the Trivers—Hare model, the level of worker male–production in Bombus is insufficient to account for observed levels of male bias. There is also no evidence that male bias arises from either local resource competition (related females compete for resources) or local mate enhancement (related males cooperate in securing mates). Bulmer presented models predicting sexual selection for protandry (males are produced before females) in annual social Hymenoptera and, as a consequence (given some parameter values), male–biased sex allocation. Bumble bees fit the assumptions of Bulmer's models and are protandrous. These models therefore represent the best current explanation for the bees' male–biased sex investment ratios. This conclusion suggests that the relative timing of the production of the sexes strongly influences sex allocation in the social Hymenoptera.


2009 ◽  
Vol 5 (5) ◽  
pp. 689-692 ◽  
Author(s):  
A. F. G. Bourke

The origin of sexual reproduction involved the evolution of zygotes from separate genomes and, like other social processes, should therefore be amenable to analysis using kin selection theory. I consider how kin structure affects sexual interactions in three contexts—the evolution of sexual reproduction, sex allocation and sexual conflict. Kin structure helps explain the even-handed replication of paternal and maternal genes under outbreeding. Under inbreeding, it predicts altruistic failure to replicate by one half of the diploid genome. Kin structure predicts optimal sex ratios and potential conflicts over sex ratio within social groups and individuals. Sexual conflict predictably occurs as a function of (i) the probability that current sexual partners will reproduce together in future and (ii) between-partner relatedness. I conclude that systematically analysing the kin structure of sexual interactions helps illuminate their evolution.


1997 ◽  
Vol 185 (4) ◽  
pp. 423-439 ◽  
Author(s):  
Francis L.W. Ratnieks ◽  
Jacobus J. Boomsma
Keyword(s):  

2021 ◽  
Author(s):  
◽  
Elizabeth Victoria Berkeley

<p>The application of sex allocation theory can provide useful insight into endangered rhinoceros biology to improve in situ and ex situ conservation efforts by understanding the factors that cause a female to produce one sex of calf. By decreasing the birth sex ratio (number of males born per number of females born) in a population it may be possible to increase population growth rates. The first aim was to determine if an environmentally cued sex allocation response occurred in black rhinos. By examining rainfall and calf sex records in a wild black rhino population, I identified that birth sex ratios increase in rainy seasons and rainy years. Mothers were more likely to be observed with male calves if they conceived during the wet season (57.3% male) than during the dry season (42.9% male). Mothers were more likely to raise male calves if they conceived during wet years (60.2% male) than during dry years (46.1% male). Next, I examined whether pulsatile or random variation in sex ratios of different magnitudes, as might occur under changes in climate patterns, would be detrimental to rhinoceros population growth. Results demonstrated that while random increases in the magnitude of birth sex ratio variation, in either direction, increased population survival probability up to 0.907, sequential pulsed years of birth sex ratio bias had the opposite effect on population performance down to a survival probability of 0.619. Furthermore, for both scenarios, populations of less than 50 animals are particularly vulnerable to extinction. Since the sex biases observed in the captive rhinoceros population were attributed to several factors, I used an information theoretic approach to evaluate the relative importance of different hypotheses for birth sex bias for predicting calf sex. The results demonstrated that none of the models tested were greatly predictive of calf sex. Suspecting that the mechanisms that were cueing calf sex occur close to the time of conception and were nutritionally cued, in the final experiment, I measured changes in blood glucose in white rhinos after they ate different meals. At 90 minutes, serum glucose levels in rhinos eating the 10 % lucerne hay diet were significantly lower than the 5% glucose and 10% glucose diets but not the 10% pellet nor 10% grass hay diets. This is the first time such an experiment has been published in a wildlife species and not only demonstrates the feasibility of training rhinos for successive blood draws but also that captive diets are low glycemic for white rhinos. Overall, my research confirmed that an environmentally cued sex allocation response does occur in African rhinos, and changes in the duration and magnitude of sex ratio patterns can decrease population growth and increase potential for extinction. Additionally, none of the previous hypotheses for the suspected male-sex bias in captive born rhinos were influential on calf sex, which shifts the focus of sex allocation research in rhinos to more acute signals around the time of conception, such as changes in diet and body condition.</p>


2007 ◽  
Vol 19 (7) ◽  
pp. 831 ◽  
Author(s):  
W. L. Linklater

Many sex allocation mechanisms are proposed but rarely have researchers considered and tested more than one at a time. Four facultative birth sex ratio (BSR) adjustment mechanisms are considered: (1) hormone-induced conception bias; (2) sex-differential embryo death from excess glucose metabolism; (3) sex-differential embryo death from embryo–uterine developmental asynchrony; and (4) pregnancy hormone suppression and resource deprivation. All mechanisms could be switched on by the corticoadrenal stress response. A total of 104 female rhinoceroses (Rhinocerotidae), translocated from 1961 to 2004 at different stages of gestation or conceived soon after arrival in captivity, were used to test for a reversal in BSR bias as evidence for the action of multiple sex-allocation mechanisms. Translocation induced a statistically significant BSR reversal between early gestation (86% male births from 0 to 0.19 gestation) and mid-gestation (38% male from 0.2 to 0.79 gestation). Captivity also induced a strongly male-biased (67% male) BSR for conceptions after arrival in captivity. The results indicate the action of at least two sex-allocation mechanisms operating in sequence, confirm the important role of sex-differential embryo death around implantation and of stress in sex allocation, and lend support to suggestions that sex-differential glucose metabolism by the preimplantation embryo likely plays a role in facultative BSR adjustment.


2018 ◽  
Vol 5 (2) ◽  
pp. 171135 ◽  
Author(s):  
Jussi Lehtonen ◽  
Lisa E. Schwanz

Sex ratio evolution has been one of the most successful areas of evolutionary theory. Pioneered by Düsing and Fisher under panmixia, and later extended by Hamilton to cover local mate competition (LMC), these models often assume, either implicitly or explicitly, that all females are fertilized. Here, we examine the effects of relaxing this assumption, under both panmictic and LMC models with diploid genetics. We revisit the question of the mathematical relationship between sex ratio and probability of fertilization, and use these results to model sex ratio evolution under risk of incomplete fertilization. We find that (i) under panmixia, mate limitation has no effect on the evolutionarily stable strategy (ESS) sex allocation; (ii) under LMC, mate limitation can make sex allocation less female-biased than under complete fertilization; (iii) contrary to what is occasionally stated, a significant fraction of daughters can remain unfertilized at the ESS in LMC with mate limitation; (iv) with a commonly used mating function, the fraction of unfertilized daughters can be quite large, and (v) with more realistic fertilization functions, the deviation becomes smaller. The models are presented in three equivalent forms: individual selection, kin selection and group selection. This serves as an example of the equivalence of the methods, while each approach has their own advantages. We discuss possible extensions of the model to haplodiploidy.


2020 ◽  
Vol 16 (6) ◽  
pp. 20190929
Author(s):  
Renée C. Firman ◽  
Jamie N. Tedeschi ◽  
Francisco Garcia-Gonzalez

Mammal sex allocation research has focused almost exclusively on maternal traits, but it is now apparent that fathers can also influence offspring sex ratios. Parents that produce female offspring under conditions of intense male–male competition can benefit with greater assurance of maximized grand-parentage. Adaptive adjustment in the sperm sex ratio, for example with an increase in the production of X-chromosome bearing sperm (CBS), is one potential paternal mechanism for achieving female-biased sex ratios. Here, we tested this mechanistic hypothesis by varying the risk of male–male competition that male house mice perceived during development, and quantifying sperm sex ratios at sexual maturity. Our analyses revealed that males exposed to a competitive ‘risk’ produced lower proportions of Y-CBS compared to males that matured under ‘no risk’ of competition. We also explored whether testosterone production was linked to sperm sex ratio variation, but found no evidence to support this. We discuss our findings in relation to the adaptive value of sperm sex ratio adjustments and the role of steroid hormones in socially induced sex allocation.


1991 ◽  
Vol 69 (12) ◽  
pp. 2973-2977 ◽  
Author(s):  
Thane Wibbels ◽  
R. Erik Martin ◽  
David W. Owens ◽  
Max S. Amoss Jr.

The sex ratio of immature loggerhead sea turtles, Caretta caretta, inhabiting the Atlantic coastal waters of Florida was investigated. Blood samples were obtained from 223 turtles that were captured in the intake channel of a power plant on Hutchinson Island. A serum androgen sexing technique was utilized to sex individual turtles. The sex ratio of the turtles (2.1 female: 1.0 male) differed significantly from 1:1 and thus appears to differ from predictions of sex allocation theory. These observations are consistent with those of a previous study, and collectively the results suggest that the sex ratio of immature C. caretta inhabiting the Atlantic coastal waters of the United States is significantly female biased: approximately two females per male.


Sign in / Sign up

Export Citation Format

Share Document