scholarly journals Should I stay or should I go? The Ectodysplasin locus is associated with behavioural differences in threespine stickleback

2009 ◽  
Vol 5 (6) ◽  
pp. 788-791 ◽  
Author(s):  
Rowan D. H. Barrett ◽  
Tim H. Vines ◽  
Jason S. Bystriansky ◽  
Patricia M. Schulte

Adaptive divergence may be facilitated if morphological and behavioural traits associated with local adaptation share the same genetic basis. It is therefore important to determine whether genes underlying adaptive morphological traits are associated with variation in behaviour in natural populations. Positive selection on low-armour alleles at the Ectodysplasin ( Eda ) locus in threespine stickleback has led to the repeated evolution of reduced armour, following freshwater colonization by fully armoured marine sticklebacks. This adaptive divergence in armour between marine and freshwater populations would be facilitated if the low allele conferred a behavioural preference for freshwater environments. We experimentally tested whether the low allele is associated with preference for freshwater by measuring the preference of each Eda genotype for freshwater versus saltwater after acclimation to either salinity. We found no association between the Eda low allele and preference for freshwater. Instead, the low allele was significantly associated with a reduced preference for the acclimation environment. This behaviour may facilitate the colonization of freshwater habitats from the sea, but could also hinder local adaptation by promoting migration of low alleles between marine and freshwater environments.

2018 ◽  
Author(s):  
Sara Marin ◽  
Juliette Archambeau ◽  
Vincent Bonhomme ◽  
Mylène Lascoste ◽  
Benoit Pujol

ABSTRACTPhenotypic differentiation among natural populations can be explained by natural selection or by neutral processes such as drift. There are many examples in the literature where comparing the effects of these processes on multiple populations has allowed the detection of local adaptation. However, these studies rarely identify the agents of selection. Whether population adaptive divergence is caused by local features of the environment, or by the environmental demand emerging at a more global scale, for example along altitudinal gradients, is a question that remains poorly investigated. Here, we measured neutral genetic (FST) and quantitative genetic (QST) differentiation among 13 populations of snapdragon plants (Antirrhinum majus) in a common garden experiment. We found low but significant genetic differentiation at putatively neutral markers, which supports the hypothesis of either ongoing pervasive homogenisation via gene flow between diverged populations or reproductive isolation between disconnected populations. Our results also support the hypothesis of local adaptation involving phenological, morphological, reproductive and functional traits. They also showed that phenotypic differentiation increased with altitude for traits reflecting the reproduction and the phenology of plants, thereby confirming the role of such traits in their adaptation to environmental differences associated with altitude. Our approach allowed us to identify candidate traits for the adaptation to climate change in snapdragon plants. Our findings imply that environmental conditions changing with altitude, such as the climatic envelope, influenced the adaptation of multiple populations of snapdragon plants on the top of their adaptation to local environmental features. They also have implications for the study of adaptive evolution in structured populations because they highlight the need to disentangle the adaptation of plant populations to climate envelopes and altitude from the confounding effects of selective pressures acting specifically at the local scale of a population.


2004 ◽  
Vol 101 (16) ◽  
pp. 6050-6055 ◽  
Author(s):  
W. A. Cresko ◽  
A. Amores ◽  
C. Wilson ◽  
J. Murphy ◽  
M. Currey ◽  
...  

Author(s):  
Tom Booker ◽  
Sam Yeaman ◽  
Michael Whitlock

Genotype environment association (GEA) studies have the potential to elucidate the genetic basis of local adaptation in natural populations. Specifically, GEA approaches look for a correlation between allele frequencies and putatively selective features of the environment. Genetic markers with extreme evidence of correlation with the environment are presumed to be tagging the location of alleles that contribute to local adaptation. In this study, we propose a new method for GEA studies called the weighted-Z analysis (WZA) that combines information from closely linked sites into analysis windows in a way that was inspired by methods for calculating FST. We analyze simulations modelling local adaptation to heterogeneous environments either using a GEA method that controls for population structure or an uncorrected approach. In the majority of cases we tested, the WZA either outperformed single-SNP based approaches or performed similarly. The WZA outperformed individual SNP approaches when the measured environment is not perfectly correlated with the true selection pressure or when a small number of individuals or demes was sampled. We apply the WZA to previously published data from lodgepole pine and identified candidate loci that were not found in the original study.


2021 ◽  
Vol 7 (25) ◽  
pp. eabg5285
Author(s):  
Garrett A. Roberts Kingman ◽  
Deven N. Vyas ◽  
Felicity C. Jones ◽  
Shannon D. Brady ◽  
Heidi I. Chen ◽  
...  

Similar forms often evolve repeatedly in nature, raising long-standing questions about the underlying mechanisms. Here, we use repeated evolution in stickleback to identify a large set of genomic loci that change recurrently during colonization of freshwater habitats by marine fish. The same loci used repeatedly in extant populations also show rapid allele frequency changes when new freshwater populations are experimentally established from marine ancestors. Marked genotypic and phenotypic changes arise within 5 years, facilitated by standing genetic variation and linkage between adaptive regions. Both the speed and location of changes can be predicted using empirical observations of recurrence in natural populations or fundamental genomic features like allelic age, recombination rates, density of divergent loci, and overlap with mapped traits. A composite model trained on these stickleback features can also predict the location of key evolutionary loci in Darwin’s finches, suggesting that similar features are important for evolution across diverse taxa.


2017 ◽  
Author(s):  
Thomas C. Nelson ◽  
William A. Cresko

ABSTRACTAdaptation in the wild often involves standing genetic variation (SGV), which allows rapid responses to selection on ecological timescales. However, we still know little about how the evolutionary histories and genomic distributions of SGV influence local adaptation in natural populations. Here, we address this knowledge gap using the threespine stickleback fish (Gasterosteus aculeatus) as a model. We extend the popular restriction site-associated DNA sequencing (RAD-seq) method to produce phased haplotypes approaching 700 base pairs (bp) in length at each of over 50,000 loci across the stickleback genome. Parallel adaptation in two geographically isolated freshwater pond populations consistently involved fixation of haplotypes that are identical-by-descent. In these same genomic regions, sequence divergence between marine and freshwater stickleback, as measured by dXY, reaches ten-fold higher than background levels and structures genomic variation into distinct marine and freshwater haplogroups. By combining this dataset with a de novo genome assembly of a related species, the ninespine stickleback (Pungitius pungitius), we find that this habitat-associated divergent variation averages six million years old, nearly twice the genome-wide average. The genomic variation that is involved in recent and rapid local adaptation in stickleback has actually been evolving throughout the 15-million-year history since the two species lineages split. This long history of genomic divergence has maintained large genomic regions of ancient ancestry that include multiple chromosomal inversions and extensive linked variation. These discoveries of ancient genetic variation spread broadly across the genome in stickleback demonstrate how selection on ecological timescales is a result of genome evolution over geological timescales, and vice versa.IMPACT STATEMENTAdaptation to changing environments requires a source of genetic variation. When environments change quickly, species often rely on variation that is already present – so-called standing genetic variation – because new adaptive mutations are just too rare. The threespine stickleback, a small fish species living throughout the Northern Hemisphere, is well-known for its ability to rapidly adapt to new environments. Populations living in coastal oceans are heavily armored with bony plates and spines that protect them from predators. These marine populations have repeatedly invaded and adapted to freshwater environments, losing much of their armor and changing in shape, size, color, and behavior.Adaptation to freshwater environments can occur in mere decades and probably involves lots of standing genetic variation. Indeed, one of the clearest examples we have of adaptation from standing genetic variation comes from a gene, eda, that controls the shifts in armor plating. This discovery involved two surprises that continue to shape our understanding of the genetics of adaptation. First, freshwater stickleback from across the Northern Hemisphere share the same version, or allele, of this gene. Second, the ‘marine’ and ‘freshwater’ alleles arose millions of years ago, even though the freshwater populations studied arose much more recently. While it has been hypothesized that other genes in the stickleback genome may share these patterns, large-scale surveys of genomic variation have been unable to test this prediction directly.Here, we use new sequencing technologies to survey DNA sequence variation across the stickleback genome for patterns like those at the eda gene. We find that every region of the genome associated with marine-freshwater genetic differences shares this pattern to some degree. Moreover, many of these regions are as old or older than eda, stretching back over 10 million years in the past and perhaps even predating the species we now call the threespine stickleback. We conclude that natural selection has maintained this variation over geological timescales and that the same alleles we observe in freshwater stickleback today are the same as those under selection in ancient, now-extinct freshwater habitats. Our findings highlight the need to understand evolution on macroevolutionary timescales to understand and predict adaptation happening in the present day.


2020 ◽  
Author(s):  
Garrett A Roberts Kingman ◽  
Deven N Vyas ◽  
Felicity C Jones ◽  
Shannon D Brady ◽  
Heidi I Chen ◽  
...  

AbstractSimilar forms often evolve repeatedly in nature, raising longstanding questions about the underlying mechanisms. Here we use repeated evolution in sticklebacks to identify a large set of genomic loci that change recurrently during colonization of new freshwater habitats by marine fish. The same loci used repeatedly in extant populations also show rapid allele frequency changes when new freshwater populations are experimentally established from marine ancestors. Dramatic genotypic and phenotypic changes arise within 5-7 years, facilitated by standing genetic variation and linkage between adaptive regions. Both the speed and location of changes can be predicted using empirical observations of recurrence in natural populations or fundamental genomic features like allelic age, recombination rates, density of divergent loci, and overlap with mapped traits. A composite model trained on these stickleback features can also predict the location of key evolutionary loci in Darwin’s finches, suggesting similar features are important for evolution across diverse taxa.


2021 ◽  
Vol 118 (31) ◽  
pp. e2100694118
Author(s):  
Garrett A. Roberts Kingman ◽  
David Lee ◽  
Felicity C. Jones ◽  
Danielle Desmet ◽  
Michael A. Bell ◽  
...  

Vertebrates have repeatedly modified skeletal structures to adapt to their environments. The threespine stickleback is an excellent system for studying skeletal modifications, as different wild populations have either increased or decreased the lengths of their prominent dorsal and pelvic spines in different freshwater environments. Here we identify a regulatory locus that has a major morphological effect on the length of stickleback dorsal and pelvic spines, which we term Maser (major spine enhancer). Maser maps in a closely linked supergene complex that controls multiple armor, feeding, and behavioral traits on chromosome IV. Natural alleles in Maser are differentiated between marine and freshwater sticklebacks; however, alleles found among freshwater populations are also differentiated, with distinct alleles found in short- and long-spined freshwater populations. The distinct freshwater alleles either increase or decrease expression of the bone growth inhibitor gene Stanniocalcin2a in developing spines, providing a simple genetic mechanism for either increasing or decreasing spine lengths in natural populations. Genomic surveys suggest many recurrently differentiated loci in sticklebacks are similarly specialized into three or more distinct alleles, providing multiple ancient standing variants in particular genes that may contribute to a range of phenotypes in different environments.


2021 ◽  
Author(s):  
Tom R Booker ◽  
Sam Yeaman ◽  
Michael Whitlock

Genotype environment association (GEA) studies have the potential to elucidate the genetic basis of local adaptation in natural populations. Specifically, GEA approaches look for a correlation between allele frequencies and putatively selective features of the environment. Genetic markers with extreme evidence of correlation with the environment are presumed to be tagging the location of alleles that contribute to local adaptation. In this study, we propose a new method for GEA studies called the weighted-Z analysis (WZA) that combines information from closely linked sites into analysis windows in a way that was inspired by methods for calculating FST. We analyze simulations modelling local adaptation to heterogeneous environments either using a GEA method that controls for population structure or an uncorrected approach. In the majority of cases we tested, the WZA either outperformed single-SNP based approaches or performed similarly. The WZA outperformed individual SNP approaches when the measured environment is not perfectly correlated with the true selection pressure or when a small number of individuals or demes was sampled. We apply the WZA to previously published data from lodgepole pine identified candidate loci that were not found in the original study.


2019 ◽  
Author(s):  
Greg M. Walter ◽  
J. David Aguirre ◽  
Melanie J Wilkinson ◽  
Thomas J. Richards ◽  
Mark W. Blows ◽  
...  

AbstractTesting whether local adaptation and intrinsic reproductive isolation share a genetic basis can reveal important connections between adaptation and speciation. Local adaptation arises as advantageous alleles spread through a population, but whether these same advantageous alleles fail on the genetic backgrounds of other populations remains largely unknown. We used a quantitative genetic breeding design to produce a late generation (F4) recombinant hybrid population by equally mating amongst four contrasting ecotypes of a native Australian daisy for four generations. We tracked fitness across generations and measured morphological traits in the glasshouse, and used a reciprocal transplant to quantify fitness in all four parental habitats. In the glasshouse, plants in the second generation showed a reduction in fitness as a loss of fertility, but this was fully recovered in the following generation. The F4 hybrid lacked extreme phenotypes present in the parental ecotypes, suggesting that genes reducing hybrid fitness were linked to traits specific to each ecotype. In the natural habitats, additive genetic variance for fitness was greatest for habitats that showed stronger native-ecotype advantage, suggesting that a loss of genetic variation present in the parental ecotypes were adaptive in the natural habitats. Reductions in genetic variance for fitness were associated with a loss of ecological trade-offs previously described in the parental ecotypes. Furthermore, natural selection on morphological traits differed amongst the parental habitats, but was not predicted to occur towards the morphology of the parental ecotypes. Together, these results suggest that intrinsic reproductive isolation removed adaptive genetic variation present in the parental ecotypes. The evolution of these distinct ecotypes was likely governed by genetic variation that resulted in both ecological trade-offs and intrinsic reproductive isolation among populations adapted to contrasting environments.


Sign in / Sign up

Export Citation Format

Share Document