scholarly journals Organization and physiology of posterior lateral line afferent neurons in larval zebrafish

2010 ◽  
Vol 6 (3) ◽  
pp. 402-405 ◽  
Author(s):  
James C. Liao

The lateral line system of larval zebrafish can translate hydrodynamic signals from the environment to guide body movements. Here, I demonstrate a spatial relationship between the organization of afferent neurons in the lateral line ganglion and the innervation of neuromasts along the body. I developed a whole cell patch clamp recording technique to show that afferents innervate multiple direction-sensitive neuromasts, which are sensitive to low fluid velocities. This work lays the foundation to integrate sensory neuroscience and the hydrodynamics of locomotion in a model genetic system.

2012 ◽  
Vol 107 (10) ◽  
pp. 2615-2623 ◽  
Author(s):  
James C. Liao ◽  
Melanie Haehnel

Fishes rely on the neuromasts of their lateral line system to detect water flow during behaviors such as predator avoidance and prey localization. Although the pattern of neuromast development has been a topic of detailed research, we still do not understand the functional consequences of its organization. Previous work has demonstrated somatotopy in the posterior lateral line, whereby afferent neurons that contact more caudal neuromasts project more dorsally in the hindbrain than those that contact more rostral neuromasts (Gompel N, Dambly-Chaudiere C, Ghysen A. Development 128: 387–393, 2001). We performed patch-clamp recordings of afferent neurons that contact neuromasts in the posterior lateral line of anesthetized, transgenic larval zebrafish ( Danio rerio) to show that larger cells are born earlier, have a lower input resistance, a lower spontaneous firing rate, and tend to contact multiple neuromasts located closer to the tail than smaller neurons, which are born later, have a higher input resistance, a higher spontaneous firing rate, and tend to contact single neuromasts. We suggest that early-born neurons are poised to detect large stimuli during the initial stages of development. Later-born neurons are more easily driven to fire and thus likely to be more sensitive to local, weaker flows. Afferent projections onto identified glutamatergic regions in the hindbrain lead us to hypothesize a novel mechanism for lateral line somatotopy. We show that afferent fibers associated with tail neuromasts respond to stronger stimuli and are wired to dorsal hindbrain regions associated with Mauthner-mediated escape responses and fast, avoidance swimming. The ability to process flow stimuli by circumventing higher-order brain centers would ease the task of processing where speed is of critical importance. Our work lays the groundwork to understand how the lateral line translates flow stimuli into appropriate behaviors at the single cell level.


2019 ◽  
Author(s):  
Elias T. Lunsford ◽  
Dimitri A. Skandalis ◽  
James C. Liao

AbstractAccurate sensory processing during movement requires the animal to distinguish between external (exafferent) and self-generated (reafferent) stimuli to maintain sensitivity to biologically relevant cues. The lateral line system in fishes is a mechanosensory organ that experiences reafferent sensory feedback via detection of fluid motion relative to the body generated during behaviors such as swimming. For the first time in larval zebrafish (Danio rerio), we employed simultaneous recordings of lateral line and motor activity to reveal the activity of afferent neurons arising from endogenous feedback from hindbrain efferent neurons during locomotion. Frequency of spontaneous spiking in posterior lateral line afferent neurons decreased during motor activity and was absent for more than half of swimming trials. Targeted photoablation of efferent neurons abolished the afferent inhibition that was correlated to swimming, indicating that inhibitory efferent neurons are necessary for modulating lateral line sensitivity during locomotion. We monitored calcium activity with Tg(elav13:GCaMP6s) fish and found synchronous activity between putative cholinergic efferent neurons and motor neurons. We examined correlates of motor activity to determine which may best predict the attenuation of afferent activity and therefore what components of the motor signal are translated through the corollary discharge. Swim duration was most strongly correlated to the change in afferent spike frequency. Attenuated spike frequency persisted past the end of the fictive swim bout, suggesting that corollary discharge also affects the glide phase of burst and glide locomotion. The duration of the glide in which spike frequency was attenuated increased with swim duration but decreased with motor frequency. Our results detail a neuromodulatory mechanism in larval zebrafish that adaptively filters self-generated flow stimuli during both the active and passive phases of locomotion.


2015 ◽  
Vol 113 (2) ◽  
pp. 657-668 ◽  
Author(s):  
Rafael Levi ◽  
Otar Akanyeti ◽  
Aleksander Ballo ◽  
James C. Liao

The ability of fishes to detect water flow with the neuromasts of their lateral line system depends on the physiology of afferent neurons as well as the hydrodynamic environment. Using larval zebrafish ( Danio rerio), we measured the basic response properties of primary afferent neurons to mechanical deflections of individual superficial neuromasts. We used two types of stimulation protocols. First, we used sine wave stimulation to characterize the response properties of the afferent neurons. The average frequency-response curve was flat across stimulation frequencies between 0 and 100 Hz, matching the filtering properties of a displacement detector. Spike rate increased asymptotically with frequency, and phase locking was maximal between 10 and 60 Hz. Second, we used pulse train stimulation to analyze the maximum spike rate capabilities. We found that afferent neurons could generate up to 80 spikes/s and could follow a pulse train stimulation rate of up to 40 pulses/s in a reliable and precise manner. Both sine wave and pulse stimulation protocols indicate that an afferent neuron can maintain their evoked activity for longer durations at low stimulation frequencies than at high frequencies. We found one type of afferent neuron based on spontaneous activity patterns and discovered a correlation between the level of spontaneous and evoked activity. Overall, our results establish the baseline response properties of lateral line primary afferent neurons in larval zebrafish, which is a crucial step in understanding how vertebrate mechanoreceptive systems sense and subsequently process information from the environment.


2014 ◽  
Vol 112 (6) ◽  
pp. 1329-1339 ◽  
Author(s):  
Melanie Haehnel-Taguchi ◽  
Otar Akanyeti ◽  
James C. Liao

The lateral line system of fishes contains mechanosensory receptors along the body surface called neuromasts, which can detect water motion relative to the body. The ability to sense flow informs many behaviors, such as schooling, predator avoidance, and rheotaxis. Here, we developed a new approach to stimulate individual neuromasts while either recording primary sensory afferent neuron activity or swimming motoneuron activity in larval zebrafish ( Danio rerio). Our results allowed us to characterize the transfer functions between a controlled lateral line stimulus, its representation by primary sensory neurons, and its subsequent behavioral output. When we deflected the cupula of a neuromast with a ramp command, we found that the connected afferent neuron exhibited an adapting response which was proportional in strength to deflection velocity. The maximum spike rate of afferent neurons increased sigmoidally with deflection velocity, with a linear range between 0.1 and 1.0 μm/ms. However, spike rate did not change when the cupula was deflected below 8 μm, regardless of deflection velocity. Our findings also reveal an unexpected sensitivity in the larval lateral line system: stimulation of a single neuromast could elicit a swimming response which increased in reliability with increasing deflection velocities. At high deflection velocities, we observed that lateral line evoked swimming has intermediate values of burst frequency and duty cycle that fall between electrically evoked and spontaneous swimming. An understanding of the sensory capabilities of a single neuromast will help to build a better picture of how stimuli are encoded at the systems level and ultimately translated into behavior.


2013 ◽  
Vol 2013 (12) ◽  
pp. pdb.prot079467-pdb.prot079467 ◽  
Author(s):  
K. Schuster ◽  
A. Ghysen

2010 ◽  
Vol 54 (8-9) ◽  
pp. 1317-1322 ◽  
Author(s):  
Alain Ghysen ◽  
Kevin Schuster ◽  
Denis Coves ◽  
Fernando de la Gandara ◽  
Nikos Papandroulakis ◽  
...  

1981 ◽  
Vol 36 (5-6) ◽  
pp. 493-496 ◽  
Author(s):  
Bernd Fritzsch

Abstract The arrangement of the lateral line afferents of salamanders as revealed by transganglionic staining with horse­ radish peroxidase is described. Each lateral line organ is supplied by two fibers only. In the medulla these two afferent fibers run in separate fiber bundles. It is suggested, that only those fibers contacting lateral line sensory cells with the same polarity form together one bundle. Bundles formed by anterior or posterior lateral line afferents are also clearly separated. Beside the lateral line organs smaller pit organs are described. These organs are supplied by one afferent only which reveals an arrangement in the medulla different from that of the lateral line afferents. Based on anatomical facts, these small pit organs are considered to be electroreceptors. Centrifugally projecting neurons, most probably efferents, are described in the medulla.


2013 ◽  
Vol 2013 (12) ◽  
pp. pdb.prot079475-pdb.prot079475
Author(s):  
K. Schuster ◽  
A. Ghysen

Author(s):  
Ramona Dries ◽  
Annemarie Lange ◽  
Sebastian Heiny ◽  
Katja I. Berghaus ◽  
Martin Bastmeyer ◽  
...  

The posterior lateral line system (pLLS) of aquatic animals comprises small clustered mechanosensory organs along the side of the animal. They develop from proneuromasts, which are deposited from a migratory primordium on its way to the tip of the tail. We here show, that the Neural Cell Adhesion Molecule Ncam1b is an integral part of the pathways initiating and regulating the development of the pLLS in zebrafish. We find that morpholino-knockdowns of ncam1b (i) reduce cell proliferation within the primordium, (ii) reduce the expression of Fgf target gene erm, (iii) severely affect proneuromast formation, and (iv) affect primordium migration. Ncam1b directly interacts with Fgf receptor Fgfr1a, and a knockdown of fgfr1a causes similar phenotypic changes as observed in ncam1b-morphants. We conclude that Ncam1b is involved in activating proliferation by triggering the expression of erm. In addition, we demonstrate that Ncam1b is required for the expression of chemokine receptor Cxcr7b, which is crucial for directed primordial migration. Finally, we show that the knockdown of ncam1b destabilizes proneuromasts, suggesting a further function of Ncam1b in strengthening the cohesion of proneuromast cells.


Sign in / Sign up

Export Citation Format

Share Document