scholarly journals Bubbles with shock waves and ultrasound: a review

2015 ◽  
Vol 5 (5) ◽  
pp. 20150019 ◽  
Author(s):  
Siew-Wan Ohl ◽  
Evert Klaseboer ◽  
Boo Cheong Khoo

The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed ‘acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics–bubble interactions, with a focus on shock wave–bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the ‘resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave–bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

Author(s):  
Chang-Wei Kang ◽  
Tandiono Tandiono ◽  
Xin Lu ◽  
Cary K. Turangan ◽  
Hafiiz Osman ◽  
...  

In this paper, we report both experimental and computational studies of hydrodynamic cavitation generated by accelerating liquid through a series of constrictions. The detailed process of cavitation generation is visualized using a high-speed photography. The cavitation is initiated when a gas bubble moves towards the constrictions. The gas bubble initially accelerates, expands and then splits into smaller bubbles when it moves along the constriction. As these bubbles migrate into a large liquid compartment, they collapse violently to form a bubble cloud, owing to a sudden jump in liquid pressure in the compartment. The experimental observation is further confirmed using computational fluid dynamics (CFD) simulations. We also present experimental evidence showing a significant reduction in gram-negative Escherichia coli concentration after it passes through the constrictions.


1988 ◽  
Vol 190 ◽  
pp. 409-425 ◽  
Author(s):  
J. P. Dear ◽  
J. E. Field

This paper describes a method for examining the collapse of arrays of cavities using high-speed photography and the results show a variety of different collapse mechanisms. A two-dimensional impact geometry is used to enable processes occurring inside the cavities such as jet motion, as well as the movement of the liquid around the cavities, to be observed. The cavity arrangements are produced by first casting water/gelatine sheets and then forming circular holes, or other desired shapes, in the gelatine layer. The gelatine layer is placed between two thick glass blocks and the array of cavities is then collapsed by a shock wave, visualized using schlieren photography and produced from an impacting projectile. A major advantage of the technique is that cavity size, shape, spacing and number can be accurately controlled. Furthermore, the shape of the shock wave and also its orientation relative to the cavities can be varied. The results are compared with proposed interaction mechanisms for the collapse of pairs of cavities, rows of cavities and clusters of cavities. Shocks of kbar (0.1 GPa) strength produced jets of c. 400 m s−1 velocity in millimetre-sized cavities. In closely-spaced cavities multiple jets were observed. With cavity clusters, the collapse proceeded step by step with pressure waves from one collapsed row then collapsing the next row of cavities. With some geometries this leads to pressure amplification. Jet production by the shock collapse of cavities is suggested as a major mechanism for cavitation damage.


1998 ◽  
Vol 24 (7) ◽  
pp. 1055-1059 ◽  
Author(s):  
Michael Delius ◽  
Friedrich Ueberle ◽  
Wolfgang Eisenmenger

Author(s):  
O. Petrenko ◽  
E. S. Geskin ◽  
G. A. Atanov ◽  
B. Goldenberg ◽  
A. Semko

Water constitutes an attractive manufacturing tool It is readily available and clean. The waterjets are conventionally used for surface cleaning, material removal, and surface modification. The intrinsic shortcomings of such an application are the need in the use of expensive and heavy pumping facilities and, what are more important, peculiarities of the waterjet-substrate interaction which limit material deformation by the incoming jet. These shortcomings are eliminated if the workpiece is impacted by the array of the water slugs, generated by the direct injection of high-intensity energy pulses into the water vessel (barrel) and ejection the portion of the water via the nozzle attached into the barrel. Such a device (barrel-nozzle combination) will constitute an effective and versatile manufacturing tool. Understanding of the phenomena that occur in the course of the energy injection into the water is necessary for the design of the desired device. The phenomena in question are determined by the ratio between the speed of the water in the barrel in the course of the energy injection and the speed of the shock waves in the water. If this ratio is much less than unity, the exit velocity is determined by the ratio between the cross section areas of the nozzle exit and the barrel. If the ratio in question approaches the unity, the water velocity at the nozzle exit is determined by the impact pressure. The device utilizing this principle is termed the water extruder. If however, the ratio is much more than unity the exit water velocity is determined by the superposition of shock waves developed in the fluid. This device termed the water cannon is able to accelerate the water slug to the speed far exceeding 1,000 m/sec. The numerical and experimental studies of water extruder were carried out. The numerical models were constructed and the variation of the water velocity and the water pressure in the barrel were investigated. Experimental setup for the study of the water extruder was constructed by the modification of Remington power tool. The experiments involved the piercing of metal strips. The effect of operational conditions on the maximal depth of the piecing was determined. Another series of experiments involved the study of the slug impact on plastic (lead) and brittle (concrete) materials. The effect of the stand off distance on the removal of both kinds of material was investigated. As the result the suggestions about the way of construction of the water extruders and their practical applications were made.


Author(s):  
E. V. Petrov ◽  
V. S. Trofimov ◽  
V. O. Kopytskiy

The surface layer of an obstacle made of U8 steel is investigated after high-speed exposure to a flow of powder particles. After analyzing the frames of high-speed photography, the average velocities of movement of particles of tungsten and titanium carbide powders were determined. It is shown that the shock-wave loading of the barrier material and the effect of particles accelerated by the explosion energy provide a change in the physical and mechanical properties of the surface and the volume of the steel barrier material.


2021 ◽  
Author(s):  
Valeriy Chernyak ◽  
Vitalii Iukhymenko ◽  
Evgen Martysh ◽  
Oleg Nedybaliuk ◽  
Oleg Fedorovich ◽  
...  

<p>Pulsed electric discharges in a liquid with the sufficiently wide range of energy contributions to them can generate diverging shock waves. А significant part of this energy is carried away by these waves from the center of the system to its periphery. At the same time, pulsed plasma-liquid systems limited by reflecting walls of both cylindrical and spherical geometry are insufficiently studied. A fundamental feature of such systems is the generation of a sequence of both diverging and converging (reflected) shock waves by a single pulse discharge. It was shown earlier that in a cylindrical plasma-liquid system with a height of the cylinder (h) comparable with the interelectrode distance (d), radius of the cylinder base R (at R >> h), when discharge current is increased, the ratio of the second diverging shock wave amplitude to the amplitude of the first diverging shock wave can be → 1. This leads to effective return of the energy carried away to the periphery back to the center of the system by converging shock waves. The collapse of the converging shock waves and initiated processes in the center of such plasma-fluid systems can be very interesting. The paper presents the results of experimental studies of pulsed cylindrical plasma-liquid system using both H<sub>2</sub>O and a mixture of H<sub>2</sub>O / D<sub>2</sub>O and pure D<sub>2</sub>O as a liquid. The energy-storage capacitor is charged by using a high voltage DC power supply (up to 70 kV).</p>


Sign in / Sign up

Export Citation Format

Share Document