scholarly journals Global network structure of dominance hierarchy of ant workers

2014 ◽  
Vol 11 (99) ◽  
pp. 20140599 ◽  
Author(s):  
Hiroyuki Shimoji ◽  
Masato S. Abe ◽  
Kazuki Tsuji ◽  
Naoki Masuda

Dominance hierarchy among animals is widespread in various species and believed to serve to regulate resource allocation within an animal group. Unlike small groups, however, detection and quantification of linear hierarchy in large groups of animals are a difficult task. Here, we analyse aggression-based dominance hierarchies formed by worker ants in Diacamma sp. as large directed networks. We show that the observed dominance networks are perfect or approximate directed acyclic graphs, which are consistent with perfect linear hierarchy. The observed networks are also sparse and random but significantly different from networks generated through thinning of the perfect linear tournament (i.e. all individuals are linearly ranked and dominance relationship exists between every pair of individuals). These results pertain to global structure of the networks, which contrasts with the previous studies inspecting frequencies of different types of triads. In addition, the distribution of the out-degree (i.e. number of workers that the focal worker attacks), not in-degree (i.e. number of workers that attack the focal worker), of each observed network is right-skewed. Those having excessively large out-degrees are located near the top, but not the top, of the hierarchy. We also discuss evolutionary implications of the discovered properties of dominance networks.

2018 ◽  
Vol 27 (07) ◽  
pp. 1850101 ◽  
Author(s):  
Xu Jiang ◽  
Xiang Long

Recently, an increasing number of real-time systems are implemented on multicore systems. To fully utilize the computation power of multicore systems, the scheduling problem of the real-time parallel task model is receiving more attention. Different types of scheduling algorithms and analysis techniques have been proposed for parallel real-time tasks modeled as directed acyclic graphs (DAG). In this paper, we study the scheduling problem for DAGs under the decomposition paradigm. We propose a new schedulability test and corresponding decomposition strategy. We show that this new decomposition approach strictly dominates the latest decomposition-based approach. Simulations are conducted to evaluate the real-time performance of our proposed scheduling algorithm, against the state-of-the-art scheduling and analysis methods of different types. Experimental results show that our method consistently outperforms other global methods under different parameter settings.


2019 ◽  
Vol 91 ◽  
pp. 78-87 ◽  
Author(s):  
Anna E. Austin ◽  
Tania A. Desrosiers ◽  
Meghan E. Shanahan

Author(s):  
Endre Csóka ◽  
Łukasz Grabowski

Abstract We introduce and study analogues of expander and hyperfinite graph sequences in the context of directed acyclic graphs, which we call ‘extender’ and ‘hypershallow’ graph sequences, respectively. Our main result is a probabilistic construction of non-hypershallow graph sequences.


2002 ◽  
Vol 13 (06) ◽  
pp. 873-887
Author(s):  
NADIA NEDJAH ◽  
LUIZA DE MACEDO MOURELLE

We compile pattern matching for overlapping patterns in term rewriting systems into a minimal, tree matching automata. The use of directed acyclic graphs that shares all the isomorphic subautomata allows us to reduce space requirements. These are duplicated in the tree automaton. We design an efficient method to identify such subautomata and avoid duplicating their construction while generating the dag automaton. We compute some bounds on the size of the automata, thereby improving on previously known equivalent bounds for the tree automaton.


Sign in / Sign up

Export Citation Format

Share Document