scholarly journals Fundamentals of soft robot locomotion

2017 ◽  
Vol 14 (130) ◽  
pp. 20170101 ◽  
Author(s):  
M. Calisti ◽  
G. Picardi ◽  
C. Laschi

Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human–robot interaction and locomotion. Although field applications have emerged for soft manipulation and human–robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jonas Jørgensen ◽  
Mads Bering Christiansen

In this article, we report on research and creative practice that explores the aesthetic interplay between movement and sound for soft robotics. Our inquiry seeks to interrogate what sound designs might be aesthetically engaging and appropriate for soft robotic movement in a social human-robot interaction setting. We present the design of a soft sound-producing robot, SONŌ, made of pliable and expandable silicone and three sound designs made for this robot. The article comprises an articulation of the underlying design process and results from two empirical interaction experiments (N = 66, N = 60) conducted to evaluate the sound designs. The sound designs did not have statistically significant effects on people’s perception of the social attributes of two different soft robots. Qualitative results, however, indicate that people’s interpretations of the sound designs depend on robot type.


Soft Robotics ◽  
2015 ◽  
pp. 231-254 ◽  
Author(s):  
Sebastian Wolf ◽  
Thomas Bahls ◽  
Maxime Chalon ◽  
Werner Friedl ◽  
Markus Grebenstein ◽  
...  

2017 ◽  
Vol 19 (12) ◽  
pp. 1700016 ◽  
Author(s):  
Panagiotis Polygerinos ◽  
Nikolaus Correll ◽  
Stephen A. Morin ◽  
Bobak Mosadegh ◽  
Cagdas D. Onal ◽  
...  

Author(s):  
Olivia Nocentini ◽  
Laura Fiorini ◽  
Giorgia Acerbi ◽  
Alessandra Sorrentino ◽  
Gianmaria Mancioppi ◽  
...  

The cooperation between humans and robots is becoming increasingly important in our society. Consequently, there is a growing interest in the development of models that can enhance the interaction between humans and robots. A key challenge in the Human-Robot Interaction (HRI) field is to provide robots with cognitive and affective capabilities, developing architectures that let them establish empathetic relationships with users. Several models have been proposed in recent years to solve this open-challenge. This work provides a survey of the most relevant attempts/works. In details, it offers an overview of the architectures present in literature focusing on three specific aspects of HRI: the development of adaptive behavioural models, the design of cognitive architectures, and the ability to establish empathy with the user. The research was conducted within two databases: Scopus and Web of Science. Accurate exclusion criteria were applied to screen the 1007 articles found (at the end 30 articles were selected). For each work, an evaluation of the model is made. Pros and cons of each work are detailed by analysing the aspects that can be improved so that an enjoyable interaction between robots and users can be established.


Author(s):  
Rhyse Bendell ◽  
Gabrielle Vasquez ◽  
Andrew B. Talone ◽  
Florian Jentsch

The intent of this evaluation is to describe the unique benefits that may be provided to human robot interaction (HRI) researchers by the capabilities of commercially available binocular head-mounted displays (HMDs) and associated handheld controllers. Three popular HMDs (Oculus Rift, HTC Vive, and Google Daydream) were compared across eight factors: cost, head tracking fidelity, visual resolution, user mobility, hand tracking fidelity, number of input modes, adaptability of input, and provided tracking space. Each of these elements was considered in the context of their relevance to the field of HRI, and potential importance for conducting research in immersive virtual reality (IVR). A Pugh chart was developed to succinctly compare the pros and cons of each headset alongside a description of IVR tasks for HRI military research as well as examples taken from work currently being conducted in our lab.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 54 ◽  
Author(s):  
Olivia Nocentini ◽  
Laura Fiorini ◽  
Giorgia Acerbi ◽  
Alessandra Sorrentino ◽  
Gianmaria Mancioppi ◽  
...  

The cooperation between humans and robots is becoming increasingly important in our society. Consequently, there is a growing interest in the development of models that can enhance and enrich the interaction between humans and robots. A key challenge in the Human-Robot Interaction (HRI) field is to provide robots with cognitive and affective capabilities, by developing architectures that let them establish empathetic relationships with users. Over the last several years, multiple models were proposed to face this open-challenge. This work provides a survey of the most relevant attempts/works. In details, it offers an overview of the architectures present in literature focusing on three specific aspects of HRI: the development of adaptive behavioral models, the design of cognitive architectures, and the ability to establish empathy with the user. The research was conducted within two databases: Scopus and Web of Science. Accurate exclusion criteria were applied to screen the 4916 articles found. At the end, 56 articles were selected. For each work, an evaluation of the model is made. Pros and cons of each work are detailed by analyzing the aspects that can be improved to establish an enjoyable interaction between robots and users.


Sign in / Sign up

Export Citation Format

Share Document