scholarly journals Sub-spreading events limit the reliable elimination of heterogeneous epidemics

2021 ◽  
Vol 18 (181) ◽  
pp. 20210444 ◽  
Author(s):  
Kris V. Parag

We show that sub-spreading events, i.e. transmission events in which an infection propagates to few or no individuals, can be surprisingly important for defining the lifetime of an infectious disease epidemic and hence its waiting time to elimination or fade-out, measured from the time-point of its last observed case. While limiting super-spreading promotes more effective control when cases are growing, we find that when incidence is waning, curbing sub-spreading is more important for achieving reliable elimination of the epidemic. Controlling super-spreading in this low-transmissibility phase offers diminishing returns over non-selective, population-wide measures. By restricting sub-spreading, we efficiently dampen remaining variations among the reproduction numbers of infectious events, which minimizes the risk of premature and late end-of-epidemic declarations. Because case-ascertainment or reporting rates can be modelled in exactly the same way as control policies, we concurrently show that the under-reporting of sub-spreading events during waning phases will engender overconfident assessments of epidemic elimination. While controlling sub-spreading may not be easily realized, the likely neglecting of these events by surveillance systems could result in unexpectedly risky end-of-epidemic declarations. Super-spreading controls the size of the epidemic peak but sub-spreading mediates the variability of its tail.

2021 ◽  
Author(s):  
Kris V Parag

We show that sub-spreading events i.e., transmission events in which an infection propagates to few or no individuals, can be surprisingly important for defining the lifetime of an infectious disease epidemic and hence its waiting time to elimination or fade-out, measured from the time-point of its last observed case. While limiting super-spreading promotes more effective control when cases are growing, we find that when incidence is waning, curbing sub-spreading is more important for achieving reliable elimination of the epidemic. Controlling super-spreading in this low-transmissibility phase offers diminishing returns over non-selective population-wide measures. By restricting sub-spreading we efficiently dampen remaining variations among event reproduction numbers, which minimises the risk of premature and late end-of-epidemic declarations. Because case-ascertainment rates can be modelled in exactly the same way as control policies, we concurrently show that the under-reporting of sub-spreading events during waning phases will engender overconfident assessments of epidemic elimination. While controlling sub-spreading may not be easily realised, the likely neglecting of these events by surveillance systems could result in unexpectedly risky end-of-epidemic declarations. Super-spreading controls the size of the epidemic peak but sub-spreading mediates the variability of its tail.


2004 ◽  
Vol 119 (5) ◽  
pp. 464-471 ◽  
Author(s):  
Virginia Dato ◽  
Michael M. Wagner ◽  
Abi Fapohunda

2016 ◽  
Vol 30 (1) ◽  
pp. 381-407 ◽  
Author(s):  
Philippe Morency-Potvin ◽  
David N. Schwartz ◽  
Robert A. Weinstein

SUMMARY Antimicrobial stewardship is a bundle of integrated interventions employed to optimize the use of antimicrobials in health care settings. While infectious-disease-trained physicians, with clinical pharmacists, are considered the main leaders of antimicrobial stewardship programs, clinical microbiologists can play a key role in these programs. This review is intended to provide a comprehensive discussion of the different components of antimicrobial stewardship in which microbiology laboratories and clinical microbiologists can make significant contributions, including cumulative antimicrobial susceptibility reports, enhanced culture and susceptibility reports, guidance in the preanalytic phase, rapid diagnostic test availability, provider education, and alert and surveillance systems. In reviewing this material, we emphasize how the rapid, and especially the recent, evolution of clinical microbiology has reinforced the importance of clinical microbiologists' collaboration with antimicrobial stewardship programs.


Author(s):  
David Murillo ◽  
Anarina Murillo ◽  
Sunmi Lee

In this work, a two-strain dengue model with vertical transmission in the mosquito population is considered. Although vertical transmission is often ignored in models of dengue fever, we show that effective control of an outbreak of dengue can depend on whether or not the vertical transmission is a significant mode of disease transmission. We model the effect of a control strategy aimed at reducing human-mosquito transmissions in an optimal control framework. As the likelihood of vertical transmission increases, outbreaks become more difficult and expensive to control. However, even for low levels of vertical transmission, the additional, uncontrolled, transmission from infected mosquito to eggs may undercut the effectiveness of any control function. This is of particular importance in regions where existing control policies may be effective and the endemic strain does not exhibit vertical transmission. If a novel strain that does exhibit vertical transmission invades, then existing, formerly effective, control policies may no longer be sufficient. Therefore, public health officials should pay more attention to the role of vertical transmission for more effective interventions and policy.


PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0160759 ◽  
Author(s):  
Doyo G. Enki ◽  
Paul H. Garthwaite ◽  
C. Paddy Farrington ◽  
Angela Noufaily ◽  
Nick J. Andrews ◽  
...  

2017 ◽  
Vol 32 (suppl_2) ◽  
pp. ii12-ii14
Author(s):  
Mishal S Khan ◽  
Shishi Wu ◽  
Xu Wang ◽  
Richard Coker

2010 ◽  
Vol 44 (2) ◽  
pp. 137-142 ◽  
Author(s):  
Dae-Weung Kim ◽  
Chang Guhn Kim ◽  
Soon-Ah Park ◽  
Sang-Ah Jung

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244921
Author(s):  
Fleur Hierink ◽  
Emelda A. Okiro ◽  
Antoine Flahault ◽  
Nicolas Ray

Background Geographical accessibility to healthcare is an important component of infectious disease dynamics. Timely access to health facilities can prevent disease progression and enables disease notification through surveillance systems. The importance of accounting for physical accessibility in response to infectious diseases is increasingly recognized. Yet, there is no comprehensive review of the literature available on infectious diseases in relation to geographical accessibility to care. Therefore, we aimed at evaluating the current state of knowledge on the effect of geographical accessibility to health care on infectious diseases in low- and middle-income countries. Methods and findings A search strategy was developed and conducted on Web of Science and PubMed on 4 March 2019. New publications were checked until May 28, 2020. All publication dates were eligible. Data was charted into a tabular format and descriptive data analyses were carried out to identify geographical regions, infectious diseases, and measures of physical accessibility among other factors. Search queries in PubMed and Web of Science yielded 560 unique publications. After title and abstract screening 99 articles were read in full detail, from which 64 articles were selected, including 10 manually. Results of the included publications could be broadly categorized into three groups: (1) decreased spatial accessibility to health care was associated with a higher infectious disease burden, (2) decreased accessibility was associated to lower disease reporting, minimizing true understanding of disease distribution, and (3) the occurrence of an infectious disease outbreak negatively impacted health care accessibility in affected regions. In the majority of studies, poor geographical accessibility to health care was associated with higher disease incidence, more severe health outcomes, higher mortality, and lower disease reporting. No difference was seen between countries or infectious diseases. Conclusions Currently, policy-makers and scientists rely on data collected through passive surveillance systems, introducing uncertainty on disease estimates for remote communities. Our results highlight the need for increasing integration of geographical accessibility measures in disease risk modelling, allowing more realistic disease estimates and enhancing our understanding of true disease burden. Additionally, disease risk estimates could be used in turn to optimize the allocation of health services in the prevention and detection of infectious diseases.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Phunlerd Piyaraj ◽  
Nira Pet-hoi ◽  
Chaiyos Kunanusont ◽  
Supanee Sangiamsak ◽  
Somsak Wankijcharoen ◽  
...  

Objective: We describe the Bangkok Dusit Medical Services Surveillance System (BDMS-SS) and use of surveillance efforts for influenza as an example of surveillance capability in near real-time among a network of 20 hospitals in the Bangkok Dusit Medical Services group (BDMS).Introduction: Influenza is one of the significant causes of morbidity and mortality globally. Previous studies have demonstrated the benefit of laboratory surveillance and its capability to accurately detect influenza outbreaks earlier than syndromic surveillance.1-3 Current laboratory surveillance has an approximately 4-week lag due to laboratory test turn-around time, data collection and data analysis. As part of strengthening influenza virus surveillance in response to the 2009 influenza A (H1N1) pandemic, the real-time laboratory-based influenza surveillance system, the Bangkok Dusit Medical Services Surveillance System (BDMS-SS), was developed in 2010 by the Bangkok Health Research Center (BHRC). The primary objective of the BDMS-SS is to alert relevant stakeholders on the incidence trends of the influenza virus. Type-specific results along with patient demographic and geographic information were available to physicians and uploaded for public health awareness within 24 hours after patient nasopharyngeal swab was collected. This system advances early warning and supports better decision making during infectious disease events.2 The BDMS-SS operates all year round collecting results of all routinely tested respiratory clinical samples from participating hospitals from the largest group of private hospitals in Thailand.Methods: The BDMS has a comprehensive network of laboratory, epidemiologic, and early warning surveillance systems which represents the largest body of information from private hospitals across Thailand. Hospitals and clinical laboratories have deployed automatic reporting mechanisms since 2010 and have effectively improved timeliness of laboratory data reporting. In April 2017, the capacity of near real-time influenza surveillance in BDMS was found to have a demonstrated and sustainable capability.Results: From October 2010 to April 2017, a total of 482,789 subjects were tested and 86,110 (17.8%) cases of influenza were identified. Of those who tested positive for influenza they were aged <2 years old (4.6%), 2-4 year old (10.9%), 5-14 years old (29.8%), 15-49 years old (41.9%), 50-64 years old (8.3%) and >65 years old (3.7%). Approximately 50% of subjects were male and female. Of these, 40,552 (47.0%) were influenza type B, 31,412 (36.4%) were influenza A unspecified subtype, 6,181 (7.2%) were influenza A H1N1, 4,001 (4.6%) were influenza A H3N2, 3,835 (4.4%) were influenza A seasonal and 196 (0.4%) were respiratory syncytial virus (RSV).The number of influenza-positive specimens reported by the real-time influenza surveillance system were from week 40, 2015 to week 39, 2016. A total of 117,867 subjects were tested and 17,572 (14.91%) cases tested positive for the influenza virus (Figure 1). Based on the long-term monitoring of collected information, this system can delineate the epidemiologic pattern of circulating viruses in near real-time manner, which clearly shows annual peaks in winter dominated by influenza subtype B in 2015-1016 season. This surveillance system helps to provide near real-time reporting, enabling rapid implementation of control measures for influenza outbreaks.Conclusions: This surveillance system was the first real-time, daily reporting surveillance system to report on the largest data base of private hospitals in Thailand and provides timely reports and feedback to all stakeholders. It provides an important supplement to the routine influenza surveillance system in Thailand. This illustrates a high level of awareness and willingness among the BDMS hospital network to report emerging infectious diseases, and highlights the robust and sensitive nature of BDMS’s surveillance system. This system demonstrates the flexibility of the surveillance systems in BDMS to evaluate to emerging infectious disease and major communicable diseases. Through participation in the Thailand influenza surveillance network, BDMS can more actively collaborate with national counterparts and use its expertise to strengthen global and regional surveillance capacity in Southeast Asia, in order to secure advances for a world safe and secure from infectious disease. Furthermore, this system can be quickly adapted and used to monitor future influenzas pandemics and other major outbreaks of respiratory infectious disease, including novel pathogens.


Sign in / Sign up

Export Citation Format

Share Document