scholarly journals Lead acid battery recycling for the twenty-first century

2018 ◽  
Vol 5 (5) ◽  
pp. 171368 ◽  
Author(s):  
Andrew D. Ballantyne ◽  
Jason P. Hallett ◽  
D. Jason Riley ◽  
Nilay Shah ◽  
David J. Payne

There is a growing need to develop novel processes to recover lead from end-of-life lead-acid batteries, due to increasing energy costs of pyrometallurgical lead recovery, the resulting CO 2 emissions and the catastrophic health implications of lead exposure from lead-to-air emissions. To address these issues, we are developing an iono-metallurgical process, aiming to displace the pyrometallurgical process that has dominated lead production for millennia. The proposed process involves the dissolution of Pb salts into the deep eutectic solvent (DES) Ethaline 200, a liquid formed when a 1 : 2 molar ratio of choline chloride and ethylene glycol are mixed together. Once dissolved, the Pb can be recovered through electrodeposition and the liquid can then be recycled for further Pb recycling. Firstly, DESs are being used to dissolve the lead compounds (PbCO 3 , PbO, PbO 2 and PbSO 4 ) involved and their solubilities measured by inductively coupled plasma optical emission spectrometry (ICP-OES). The resulting Pb 2+ species are then reduced and electrodeposited as elemental lead at the cathode of an electrochemical cell; cyclic voltammetry and chronoamperometry are being used to determine the electrodeposition behaviour and mechanism. The electrodeposited films were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). We discuss the implications and opportunities of such processes.

2019 ◽  
Vol 3 (1) ◽  
pp. 33 ◽  
Author(s):  
Liana Azizova ◽  
Santanu Ray ◽  
Sergey Mikhalovsky ◽  
Lyuba Mikhalovska

Nitric oxide (NO) generating surfaces are potentially promising for improving haemocompatibility of blood-contacting biomaterials. In the present report, Cu-modified poly(vinyl chloride) (PVC) and polyurethane (PU) were prepared via polydopamine (pDA)-assisted chelation. The copper content on the PVC and PU modified surfaces, assessed by inductively coupled plasma - optical emission spectrometry (ICP-OES), were about 3.86 and 6.04 nmol·cm−2, respectively. The Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) data suggest that copper is attached to the polymer surface through complex formation with pDA. The cumulative leaching of copper from modified PVC and PU during the five day incubation in phosphate buffered saline (PBS), measured by inductively coupled plasma mass spectrometry (ICP-MS), was about 50.7 ppb and 48 ppb, respectively which is within its physiological level. Modified polymers were tested for their ability to catalytically generate NO by decomposing of endogenous S-nitrosothiol (GSNO). The obtained data show that Cu-modified PVC and PU exhibited the capacity to generate physiological levels of NO which could be a foundation for developing new biocompatible materials with NO-based therapeutics.


2019 ◽  
Vol 21 (3) ◽  
pp. 48-52
Author(s):  
Artur Jurkowski ◽  
Zofia Lendzion-Bieluń

Abstract In the presented article, oxide forms of iron catalysts with the wustite structure and with a R = Fe2+/Fe3+ molar ratio in the range from 3.78 to 8.16 were investigated. The chemical composition of the tested catalyst precursors was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The X-ray diffraction (XRD) technique was used to determine the phase composition and location of reflections characteristic of the Fe1−xO phase. The molar ratio of iron ions R = Fe2+/Fe3+ was determined by manganometric titration. The distribution of promoters in the structure of iron catalyst precursors with different R = Fe2+/Fe3+ ratio was determined by a selective etching method. The dependence of the lattice parameter ao value in the crystal structure Fe1−xO on the molar ratio R = Fe2+/Fe3+ was determined. On the basis of the determined dependence, R can easily be calculated in catalyst precursors of the wustite structure.


Sign in / Sign up

Export Citation Format

Share Document