scholarly journals Ab initio electronic stopping power for protons in Ga 0.5 In 0.5 P/GaAs/Ge triple-junction solar cells for space applications

2020 ◽  
Vol 7 (11) ◽  
pp. 200925
Author(s):  
Natalia E. Koval ◽  
Fabiana Da Pieve ◽  
Emilio Artacho

Motivated by the radiation damage of solar panels in space, firstly, the results of Monte Carlo particle transport simulations are presented for proton impact on triple-junction Ga 0.5 In 0.5 P/GaAs/Ge solar cells, showing the proton projectile penetration in the cells as a function of energy. It is followed by a systematic ab initio investigation of the electronic stopping power (ESP) for protons in different layers of the cell at the relevant velocities via real-time time-dependent density functional theory calculations. The ESP is found to depend significantly on different channelling conditions, which should affect the low-velocity damage predictions, and which are understood in terms of impact parameter and electron density along the path. Additionally, we explore the effect of the interface between the layers of the multilayer structure on the energy loss of a proton, along with the effect of strain in the lattice-matched solar cell. Both effects are found to be small compared with the main bulk effect. The interface energy loss has been found to increase with decreasing proton velocity, and in one case, there is an effective interface energy gain.

2021 ◽  
Author(s):  
Sophia Malko ◽  
Witold Cayzac ◽  
Valeria Ospina-Bohorquez ◽  
Krish Bhutwala ◽  
M Bailly-Grandvaux ◽  
...  

Abstract Ion stopping in warm dense matter is a process of fundamental importance for the understanding of the properties of dense plasmas, the realization and the interpretation of experiments involving ion-beam-heated warm dense matter samples, and for inertial confinement fusion research. The theoretical description of the ion stopping power in warm dense matter is difficult notably due to electron coupling and degeneracy, and measurements are still largely missing. In particular, the low-velocity stopping range around the Bragg peak, that features the largest modeling uncertainties, remains virtually unexplored. Here, we report proton energy-loss measurements in warm dense plasma at unprecedented low projectile velocities, approaching significantly the Bragg-peak region. Our energy-loss data, combined with a precise target characterization based on plasma emission measurements using two independent spectroscopy diagnostics, demonstrate a significant deviation of the stopping power from classical models in this regime. In particular, we show that our results are consistent with recent first-principles simulations based on time-dependent density functional theory.


2021 ◽  
pp. 2100603
Author(s):  
Min Qian ◽  
Xiaojun Mao ◽  
Min Wu ◽  
Zhangyi Cao ◽  
Qing Liu ◽  
...  

1995 ◽  
Vol 389 ◽  
Author(s):  
S.-H. Yang ◽  
S. Morris ◽  
S. Tian ◽  
K. Parab ◽  
A. F. Tasch ◽  
...  

ABSTRACTIn this paper is reported the development and implementation of a new local electronic stopping model for arsenic ion implantation into single-crystal silicon. Monte Carlo binary collision (MCBC) models are appropriate for studying channeling effects since it is possible to include the crystal structure in the simulators. One major inadequacy of existing MCBC codes is that the electronic stopping of implanted ions is not accurately and physically accounted for, although it is absolutely necessary for predicting the channeling tails of the profiles. In order to address this need, we have developed a new electronic stopping power model using a directionally dependent electronic density (to account for valence bonding) and an electronic stopping power based on the density functional approach. This new model has been implemented in the MCBC code, UT-MARLOWE The predictions of UT-MARLOWE with this new model are in very good agreement with experimentally-measured secondary ion mass spectroscopy (SIMS) profiles for both on-axis and off-axis arsenic implants in the energy range of 15-180 keV.


2017 ◽  
Vol 34 (6) ◽  
pp. 068801 ◽  
Author(s):  
Du-Xiang Wang ◽  
Ming-Hui Song ◽  
Jing-Feng Bi ◽  
Wen-Jun Chen ◽  
Sen-Lin Li ◽  
...  

2019 ◽  
Vol 7 ◽  
Author(s):  
Jacopo Parravicini ◽  
Francesco Arcadi ◽  
Alessia Le Donne ◽  
Roberta Campesato ◽  
Mariacristina Casale ◽  
...  

2014 ◽  
Vol 31 (8) ◽  
pp. 086103 ◽  
Author(s):  
Rong Wang ◽  
Ming Lu ◽  
Tian-Cheng Yi ◽  
Kui Yang ◽  
Xiao-Xia Ji

2018 ◽  
Vol 26 (9) ◽  
pp. 740-744 ◽  
Author(s):  
Arto Aho ◽  
Riku Isoaho ◽  
Antti Tukiainen ◽  
Gabriele Gori ◽  
Roberta Campesato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document