scholarly journals On the relativistic invariance of quantized field theories

Heisenberg & Pauli (1929) have shown how to quantize field theories derived from Lagrangians containing first-order derivatives of the field quantities. They showed their quantization to be Lorentz invariant. Fuchs (1939) subsequently showed that the quantized theory was in fact invariant under general transformations of co-ordinates. The present author in another paper has shown how the theory of Heisenberg & Pauli can be extended to field equations derived from higher order Lagrangians, i. e. Lagrangians containing higher deri­vatives than the first of the field quantities. In the present paper the general relativistic invariance of the higher order quantized theories is established, making use of the generalized Poisson brackets introduced by Weiss.

1950 ◽  
Vol 46 (2) ◽  
pp. 316-318
Author(s):  
J. S. de Wet

In an earlier paper (1), which will be referred to as A, the present author has demonstrated the relativistic invariance, for general transformations of coordinates, of the Einstein-Bose and Fermi-Dirac quantizations of linear field equations derived from higher order Lagrangians. The proof consisted of the identification of the commutation relations with the generalized Poisson brackets introduced by Weiss (2) and proving the invariance of the latter.


1983 ◽  
Vol 38 (12) ◽  
pp. 1293-1295
Author(s):  
D. Großer

Abstract A field theory which is based entirely on fermion fields is non-renormalizable if the kinetic energy contains only derivatives of first order and therefore higher derivatives have to be included. Such field theories may be useful for describing preons and their interaction. In this note we show that a spinor field which satisfies a higher order field equation with an arbitrary nonlinear selfinteraction can be written as a sum of fields which satisfy first order equations.


Author(s):  
J. S. de Wet

Heisenberg and Pauli (1) have shown how to quantize field theories derived from a Lagrangian containing first derivatives of the field quantities only. The present paper extends the theory of quantization of fields to the case of higher order Lagrangians, i.e. Lagrangians in which higher derivatives than the first appear. It is shown how such field equations can be put into Hamiltonian form and how the quantization can subsequently be carried out. Both the cases of Einstein-Bose and Fermi-Dirac quantization are discussed. It is established that the quantization is relativistically invariant and consistent with the field equations. An interesting feature of the present theory is that the Hamiltonian proves to be different, in general, from the integral of the 4–4 component of the energy momentum tensor.


2002 ◽  
Vol 29 (12) ◽  
pp. 687-699 ◽  
Author(s):  
A. Echeverría-Enríquez ◽  
M. C. Muñoz-Lecanda ◽  
N. Román-Roy

We give a geometric formulation of the field equations in the Lagrangian and Hamiltonian formalisms of classical field theories (of first order) in terms of multivector fields. This formulation enables us to discuss the existence and nonuniqueness of solutions of these equations, as well as their integrability.


The Euler-Lagrange equations corresponding to a Lagrange density which is a function of the metric tensor g ij and its first two derivatives together with the first derivative of a vector field ψ i are investigated. In general, the Euler-Lagrange equations obtained by variation of g ij are of fourth order in g ij and third order in ψ i . It is shown that in a four dimensional space the only Euler-Lagrange equations which are of second order in g ij and first order in ψ i are the Einstein field equations (with an energy-momentum term). Various conditions are obtained under which the Einstein-Maxwell field equations are then an inevitable consequence.


Author(s):  
Rainer Pfaff

SynopsisWe consider ordinary linear differential systems of first order with distributional coefficients and distributional nonhomogeneous terms. Firstly the coefficients are assumed to be functions, secondly to be first order distributions (i.e. first derivatives of functions which are integrable or of bounded variation), and thirdly to be distributions of higher order.


Author(s):  
T. S. Chang

The relativistic field theories of elementary particles are extended to cases where the field equations are derived from Lagrangians containing all derivatives of the field quantities. Expressions for the current, the energy-momentum tensor, the angular-momentum tensor, and the symmetrized energy-momentum tensor are given. When the field interacts with an electromagnetic field, we introduce a subtraction procedure, by which all the above expressions are made gauge-invariant. The Hamiltonian formulation of the equations of motion in a gauge-invariant form is also given.After considering the Lagrangian L as a scalar in a general relativity transformation and thus a function of gμν and their derivatives, the functional derivative ofwith respect to gμν (x) at a point where the space time is flat is worked out. It is shown that this differs from the symmetrized energy-momentum tensor given in the above sections by a term which vanishes when certain operators Sij are antisymmetrical or when the Lagrangian contains the first derivatives of the field quantities only and whose divergence to either μ or ν vanishes.


2005 ◽  
Vol 02 (05) ◽  
pp. 839-871 ◽  
Author(s):  
MANUEL DE LEÓN ◽  
JESÚS MARÍN-SOLANO ◽  
JUAN CARLOS MARRERO ◽  
MIGUEL C. MUÑOZ-LECANDA ◽  
NARCISO ROMÁN-ROY

We present a geometric algorithm for obtaining consistent solutions to systems of partial differential equations, mainly arising from singular covariant first-order classical field theories. This algorithm gives an intrinsic description of all the constraint submanifolds. The field equations are stated geometrically, either representing their solutions by integrable connections or, what is equivalent, by certain kinds of integrable m-vector fields. First, we consider the problem of finding connections or multivector fields solutions to the field equations in a general framework: a pre-multisymplectic fiber bundle (which will be identified with the first-order jet bundle and the multi-momentum bundle when Lagrangian and Hamiltonian field theories are considered). Then, the problem is stated and solved in a linear context, and a pointwise application of the results leads to the algorithm for the general case. In a second step, the integrability of the solutions is also studied. Finally, the method is applied to Lagrangian and Hamiltonian field theories and, for the former, the problem of finding holonomic solutions is also analyzed.


Author(s):  
Dinshaw S. Balsara ◽  
Roger Käppeli ◽  
Walter Boscheri ◽  
Michael Dumbser

AbstractSeveral important PDE systems, like magnetohydrodynamics and computational electrodynamics, are known to support involutions where the divergence of a vector field evolves in divergence-free or divergence constraint-preserving fashion. Recently, new classes of PDE systems have emerged for hyperelasticity, compressible multiphase flows, so-called first-order reductions of the Einstein field equations, or a novel first-order hyperbolic reformulation of Schrödinger’s equation, to name a few, where the involution in the PDE supports curl-free or curl constraint-preserving evolution of a vector field. We study the problem of curl constraint-preserving reconstruction as it pertains to the design of mimetic finite volume (FV) WENO-like schemes for PDEs that support a curl-preserving involution. (Some insights into discontinuous Galerkin (DG) schemes are also drawn, though that is not the prime focus of this paper.) This is done for two- and three-dimensional structured mesh problems where we deliver closed form expressions for the reconstruction. The importance of multidimensional Riemann solvers in facilitating the design of such schemes is also documented. In two dimensions, a von Neumann analysis of structure-preserving WENO-like schemes that mimetically satisfy the curl constraints, is also presented. It shows the tremendous value of higher order WENO-like schemes in minimizing dissipation and dispersion for this class of problems. Numerical results are also presented to show that the edge-centered curl-preserving (ECCP) schemes meet their design accuracy. This paper is the first paper that invents non-linearly hybridized curl-preserving reconstruction and integrates it with higher order Godunov philosophy. By its very design, this paper is, therefore, intended to be forward-looking and to set the stage for future work on curl involution-constrained PDEs.


2015 ◽  
Vol 12 (09) ◽  
pp. 1550084 ◽  
Author(s):  
Jerzy Kijowski ◽  
Giovanni Moreno

In this paper, we derive the symplectic framework for field theories defined by higher order Lagrangians. The construction is based on the symplectic reduction of suitable spaces of iterated jets. The possibility of reducing a higher order system of partial differential equations to a constrained first-order one, the symplectic structures naturally arising in the dynamics of a first-order Lagrangian theory, and the importance of the Poincaré–Cartan form for variational problems, are all well-established facts. However, their adequate combination corresponding to higher order theories is missing in the literature. Here we obtain a consistent and truly finite-dimensional canonical formalism, as well as a higher order version of the Poincaré–Cartan form. In our exposition, the rigorous global proofs of the main results are always accompanied by their local coordinate descriptions, indispensable to work out practical examples.


Sign in / Sign up

Export Citation Format

Share Document