The conductivity of thin wires in a magnetic field

A thin film or wire of metal has a lower electrical conductivity than the bulk material if the thickness is comparable with or smaller than the electronic mean free path. Previous workers have obtained expressions for the magnitude of the effect by integrating the Boltzmann equation and imposing the appropriate boundary conditions. The problem is re-examined from a kinetic theory standpoint, and it is shown that the same expressions are obtained by this method, usually rather more simply, while the physical picture is considerably clarified. The method is applied to an evaluation of the conductivity of a thin wire with a magnetic field along the axis, and it is found that the resistivity should decrease as the magnetic field is increased; it should be possible to derive the mean free path and velocity of the conduction electrons by comparison of theory and experiment. The theory has been confirmed by experimental measurements on sodium; estimates of electronic velocity and mean free path are obtained which are in fair agreement with the values given by the free-electron theory.

1. When the motion of ions in a gas takes place in a magnetic field the rates of diffusion and the velocities due to an electric force may be determined by methods similar to those given in a previous paper. The effect of the magnetic field may be determined by considering the motion of each ion between collisions with molecules. The magnetic force causes the ions to be deflected in their free paths, and when no electric force is acting the paths are spirals, the axes being along the direction of the magnetic force. If H be the intensity of the magnetic field, e the charge, and m the mass of an ion, then the radius r of the spiral is mv /He, v being the velocity in the direction perpendicular to H. The distance that the ion travels in the interval between two collisions in a direction normal to the magnetic force is a chord of the circle of radius r . The average lengths of these chords may be reduced to any fraction of the projection of the mean free path in the direction of the magnetic force, so that the rate of diffusion of ions in the directions perpendicular to the magnetic force is less than the rate of diffusion in the direction of the force.


In the first part of this paper, simple approximate methods have been developed for evaluating the electrical conductivity of films and wires of a size comparable with the mean free path of the conduction electrons. In the second part, a rigorous theory has been given of the electrical conductivity of a thin wire, on the assumptions that the Fermi velocity surface is spherical and that the collisions of the electrons at the surface of the wire are inelastic. In the third part of the paper, this theory has been generalized to cover the case where the scattering is no longer inelastic. In the final part, Andrew’s recent experimental results for a thin mercury wire have been fitted to the theoretical curves obtained, and the mean free path evaluated.


One may say that prior to the introduction of the Fermi-Dirac statistics into the theory of metallic conduction and allied phenomena a general mathematical method of attack on the various problems had been developed which necessarily still forms the basis of the modern treatment; but nevertheless in most cases the older theory had little success in predicting the order of magnitude, and in some cases, even the qualitative features of the various effects. However, the ground had been well prepared, so that as soon as it was realized that the electrons in a metal did not really obey the Maxwell but the Fermi-Dirac statistics, the mere introduction of the latter distribution function in the place of the former in the classical equations proved sufficient to clear away many of the old difficulties. Since the appearance of Sommerfeld’s paper in 1928 the first order effects have received on the whole a satisfactory explanation. In the case of the second order effects, however— and it is with one of these that the present paper deals—there are still very considerable difficulties to be faced. The problem of the change of resistance of a metal in a magnetic field has been treated by Sommerfeld, making use of a method which was originally developed by Gans. The calculations follow closely the classical treatment of Lorentz in that the mean free path of an electron is introduced phenomenologically as a parameter to be determined from the known experimental value of the conductivity. In the classical theory one pictures the process as follows. The metal is regarded as having a regular three-dimensional lattice structure with the metallic ions situated at the lattice points. It is further supposed that there are a certain number of conduction electrons, which might well correspond with the valency electrons, and that the assembly of conduction electrons obeys the classical distribution law. When an electric field is applied in a given direction the electrons are accelerated and experience elastic collisions with the metallic ions. Finally an equilibrium state is reached in which the number of electrons entering a given velocity range in unit time is just equal to the number ejected by collisions, and the mathematical expression of this state takes the form of an integral equation which must be solved to find the change in the original distribution function due to the applied field. From the change in the distribution function the conductivity is calculated. In the semi-classical calculations of Sommerfeld the model is the same except that the Fermi-Dirac statistics are used instead of the Max-wellian. If one compares the value of the conductivity, thus obtained, with the experimental value, one obtains a mean free path which is about a hundred times greater than the lattice spacing. This large value is not very plausible on classical ideas; but is readily understandable on wave mechanical principles.


In the present work the measurements of the resistivity of evaporated films of the alkali metals (Lovell 1936 a, b ; Appleyard and Lovell 1937) have been extended to a thickness of several thousand angstroms. The previous results were limited to films of less than a few hundred angstroms in thick­ness; and it appeared that thin creased resistivity of these thin films com­pared with that of the bulk metal was due merely to the shortening of the mean free path of the conduction electrons by collision with the boundaries of the film. It was therefore to be expected that at thicknesses much in excess of the mean free path the resistivity of the film material should closely approximate to that of the bulk metal. The present results confirm this expectation only in the case of caesium, where the resistivity approaches within a few per cent that of the bulk metal. Potassium and rubidium films, on the other hand, show a considerable excess of resistivity above that of the bulk metal, but it is shown that this excess is a residual resistance due to lattice strain, and that it may be partially removed by suitable annealing.


2017 ◽  
Vol 35 (3) ◽  
pp. 513-519 ◽  
Author(s):  
A. Bret ◽  
A. Pe'er ◽  
L. Sironi ◽  
M.E. Dieckmann ◽  
R. Narayan

AbstractIn plasmas where the mean-free-path is much larger than the size of the system, shock waves can arise with a front much shorter than the mean-free-path. These so-called “collisionless shocks” are mediated by collective plasma interactions. Studies conducted so far on these shocks found that although binary collisions are absent, the distribution functions are thermalized downstream by scattering on the fields, so that magnetohydrodynamics prescriptions may apply. Here we show a clear departure from this pattern in the case of Weibel shocks forming over a flow-aligned magnetic field. A micro-physical analysis of the particle motion in the Weibel filaments shows how they become unable to trap the flow in the presence of too strong a field, inhibiting the mechanism of shock formation. Particle-in-cell simulations confirm these results.


Sign in / Sign up

Export Citation Format

Share Document